Citation: | WANG Yiyun, YU Rongjie. An Analysis of Safety Influencing Factors for Longitudinal Interaction Between Vehicles in Human-machine Mixed Traffic Driving Conditions[J]. Journal of Transport Information and Safety, 2024, 42(3): 11-19. doi: 10.3963/j.jssn.1674-4861.2024.03.002 |
[1] |
WAYMO L L C. We're building the world's most experienced driver[R/OL]. (2019-09-05)[2023-08-16].
|
[2] |
魏文. 华为预测2030年自动驾驶新车渗透率达20%, 智能汽车时代临近?[R/OL]. (2021-09-23)[2023-08-16].
WEI W. The penetration rate of new autonomous vehicles in China is expected to reach 20% by 2030. [EB/OL]. (2021-09-23)[2023-08-16].
|
[3] |
TAHIR Z, ALEXANDER R. Coverage based testing for V&V and safety assurance of self-driving autonomous vehicles: a systematic literature review[C]. IEEE International Conference on Artificial Intelligence Testing(AITest), Oxford, UK: IEEE, 2020.
|
[4] |
MAHDINIA I, MOHAMMADNAZAR A, ARVIN R, et al. Integration of automated vehicles in mixed traffic: evaluating changes in performance of following human-driven vehicles[J]. Accident Analysis & Prevention, 2021, 152: 106006.
|
[5] |
SCHOETTLE B, SIVAK M. A preliminary analysis of real-world crashes involving self-driving vehicles[R]. Ann Arbor, USA: University of Michigan Transportation Research Institute, 2015.
|
[6] |
XU C, DING Z, WANG C, et al. Statistical analysis of the patterns and characteristics of connected and autonomous vehicle involved crashes[J]. Journal of Safety Research, 2019, 71: 41-47. doi: 10.1016/j.jsr.2019.09.001
|
[7] |
MA Z, ZHANG Y. Driver-automated Vehicle interaction in mixed traffic: types of interaction and drivers' driving styles[J]. Human Factors, 2024, 66(2): 544-561. doi: 10.1177/00187208221088358
|
[8] |
STANGE V, KUHN M, VOLLRATH M. Safety at first sight? - manual drivers' experience and driving behavior at first contact with Level 3 vehicles in mixed traffic on the highway[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2022, 87: 327-346. doi: 10.1016/j.trf.2022.04.004
|
[9] |
REDDY N, HOOGENDOORN S P, FARAH H. How do the recognizability and driving styles of automated vehicles affect human drivers' gap acceptance at T-Intersections?[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2022, 90: 451-465. doi: 10.1016/j.trf.2022.09.018
|
[10] |
HUANG Y, YE Y, SUN J, et al. Characterizing the impact of autonomous vehicles on macroscopic fundamental diagrams[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(6): 6530-6541. doi: 10.1109/TITS.2023.3265647
|
[11] |
WEN X, CUI Z, JIAN S. Characterizing car-following behaviors of human drivers when following automated vehicles using the real-world dataset[J]. Accident Analysis & Prevention, 2022, 172: 106689.
|
[12] |
WANG Y, FARAH H, YU R, et al. Characterizing behavioral differences of autonomous vehicles and human-driven vehicles at signalized intersections based on Waymo open dataset[J]. Transportation Research Record, 2023, 2677(11): 324-337. doi: 10.1177/03611981231165783
|
[13] |
HU X, ZHENG Z, CHEN D, et al. Autonomous vehicle's impact on traffic: empirical evidence from Waymo open dataset and implications from modelling[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24 (6) : 6711-6724. doi: 10.1109/TITS.2023.3258145
|
[14] |
YU R, ZHENG Y, QIN Y, et al. Utilizing partial least-squares path modeling to analyze crash risk contributing factors for Shanghai urban expressway system[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2019, 5(4): 05019001. doi: 10.1061/AJRUA6.0001022
|
[15] |
WAYMO L L C. Waymo open dataset[R/OL]. (2019)[2023-08-16].
|
[16] |
HOUSTON J, ZUIDHOF G, BERGAMINI L, et al. One thousand and one hours: self-driving motion prediction dataset[C]. Conference on Robot Learning, London, UK: PMLR, 2021.
|
[17] |
CAESAR H, BANKITI V, LANG A, et al. Nuscenes: a multimodal dataset for autonomous driving[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA: IEEE, 2020.
|
[18] |
PUNZO V, MONTANINO M, CIUFFO B. On the assessment of vehicle trajectory data accuracy and application to the next generation simulation(NGSIM)program data[J]. Transportation Research Part C: Emerging Technologies, 2011, 19(6): 1243-1262. doi: 10.1016/j.trc.2010.12.007
|
[19] |
SUN P, KRETZSCHMAR H, DOTIWALLA X, et al. Scalability in perception for autonomous driving: Waymo open dataset[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE, 2020.
|
[20] |
ETTINGER S, CHENG S, CAINE B, et al. Large scale interactive motion forecasting for autonomous driving: the waymo open motion dataset[C]. IEEE/CVF International Conference on Computer Vision. Montreal, Canada: IEEE, 2021.
|
[21] |
SUN Z, YAO X, QIN Z, et al. Modeling car-following heterogeneities by considering leader-follower compositions and driving style differences[J]. Transportation Research Record, 2021, 2675(11): 851-864. doi: 10.1177/03611981211020006
|
[22] |
HU X, ZHENG Z, CHEN D, et al. Processing, assessing, and enhancing the Waymo autonomous vehicle open dataset for driving behavior research[J]. Transportation Research Part C: Emerging Technologies, 2022, 134: 103490. doi: 10.1016/j.trc.2021.103490
|
[23] |
WANG C, XIE Y, HUANG H, et al. A review of surrogate safety measures and their applications in connected and automated vehicles safety modeling[J]. Accident Analysis & Prevention, 2021, 157: 106157.
|
[24] |
鄢云珠, 傅忠宁, 岳金田. 车辆怠速起停系统使用意愿结构方程模型及影响因素分析[J]. 交通信息与安全, 2023, 41(6): 161-170.
YAN Y Z, FU Z N, YUE J T. An analysis of the influence factors on using intention of vehicle idle start-stop system with a structural equation model[J]. Journal of Transport Information and Safety, 2023, 41(6): 161-170. (in Chinese)
|
[25] |
王永岗, 张衡, 彭志鹏, 等. 基于结构方程模型的出租车事故影响因素分析[J]. 重庆交通大学学报(自然科学版), 2021, 40(6): 36. doi: 10.3969/j.issn.1674-0696.2021.06.06
WANG Y G, ZHANG H, PENG Z P, et al. Analysis of influencing factors of taxi accidents based on structural equation model[J]. Journal of Chongqing Jiaotong University(Natural Science), 2021, 40(6): 36. (in Chinese) doi: 10.3969/j.issn.1674-0696.2021.06.06
|
[26] |
陈春. 道路交通事故的影响因素研究: 基于结构方程模型的实证研究[J]. 中国安全生产科学技术, 2014, 10(5): 110-116.
CHEN C. Research on influencing factors of road traffic accidents: empirical study based on structural equation model[J]. Journal of Safety Science and Technology, 2014, 10 (5): 110-116. (in Chinese)
|
[27] |
姚荣涵, 祁文彦, 郭伟伟. 自动驾驶环境下驾驶人接管行为结构方程模型[J]. 交通运输工程学报, 2021, 21(2): 209-221.
YAO R H, QI W Y, GUO W W. Structural equation model of drivers' takeover behaviors in autonomous driving environment[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 209-221. (in Chinese)
|