Citation: | ZHOU Yong, ZHANG Bingzhen, ZHANG Xiaoyong, LIU Yuming. A Detection Method for Abandoned Materials on Road Surface Based on an Improved YOLO and Background Differencing Algorithm[J]. Journal of Transport Information and Safety, 2022, 40(5): 112-119. doi: 10.3963/j.jssn.1674-4861.2022.05.012 |
[1] |
李杰, 曾叙砜, 李平, 等. 道路交通安全文献的知识可视化综述[J]. 交通信息与安全, 2020, 38(1): 13-19. doi: 10.3963/j.jssn.1674-4861.2020.01.002
LI J, ZENG X F, LI P, et al. Visualization review of road traffic safety literature[J]. Journal of Transport Information and Safety, 2020, 38(1): 13-19. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2020.01.002
|
[2] |
MCHUGH J M, KONRAD J, SALIGRAMA V, et al. Foreground-adaptive background subtraction[J]. IEEE Signal Processing Letters, 2009, 16(5): 390-393. doi: 10.1109/LSP.2009.2016447
|
[3] |
SZWOCH G. Extraction of stable foreground image regions for unattended luggage detection[J]. Multimedia Tools and Applications, 2016, 75(2): 761-786. doi: 10.1007/s11042-014-2324-4
|
[4] |
ZENG Y, LAN J, RAN B, et al. A novel abandoned object detection system based on three-dimensional image information[J]. Sensors, 2015, 15(3): 6885-6904. doi: 10.3390/s150306885
|
[5] |
汪贵平, 马力旺, 郭璐, 等. 高速公路抛洒物事件图像检测算法[J]. 长安大学学报(自然科学版), 2017, 37(5): 81-88. doi: 10.3969/j.issn.1671-8879.2017.05.011
WANG G P, MA L W, GUO L, et al. Image detection algorithm for incident of discarded things in highway[J]. Journal of Chang'an University(Natural Science Edition), 2017, 37(5): 81-88. (in Chinese) doi: 10.3969/j.issn.1671-8879.2017.05.011
|
[6] |
杨杰超, 许江淳, 陆万荣, 等. 嵌入式高速公路异物侵限的检测与跟踪研究[J]. 自动化仪表, 2018, 39(12): 70-73. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDYB201812017.htm
YANG J C, XU J C, LU W R, et al. Study on embedded expressway clearance intrusion detection and tracking[J]. Process Automation Instrumentation, 2018, 39(12): 70-73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDYB201812017.htm
|
[7] |
宁正, 牛宏侠, 张肇鑫. 基于改进混合高斯模型的铁轨异物入侵检测方法[J]. 传感器与微系统, 2021, 40(5): 146-149. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ202105041.htm
NING Z, NIU H X, ZHANG Z X. Railway foreign body intrusion detection method based on improved mixed Gaussian model[J]. Transducer and Microsystem Technologies, 2021, 40(5): 146-149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ202105041.htm
|
[8] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]. Conference on Computer Vision and Pattern Recognition, Las Vegas, USA: IEEE, 2016.
|
[9] |
金瑶, 张锐, 尹东. 城市道路视频中小像素目标检测[J]. 光电工程, 2019, 46(9): 76-83. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201909009.htm
JIN Y, ZHANG R, YIN D. Object detection for small pixel in urban roads videos[J]. Opto-Electronic Engineering, 2019, 46(9): 76-83. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201909009.htm
|
[10] |
章悦, 张亮, 谢非, 等. 基于实例分割模型优化的道路抛洒物检测算法[J]. 计算机应用, 2021, 41(11): 3228-3233. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY202111021.htm
ZHANG Y, ZHANG L, XIE F, et al. Road abandoned object detection algorithm based on optimized instance segmentation model[J]. Journal of Computer Applications, 2021, 41(11): 3228-3233. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY202111021.htm
|
[11] |
周雯, 史天运, 李平, 等. 基于深度学习的动车组运行安全图像异物检测[J]. 交通信息与安全, 2019, 37(6): 48-55. doi: 10.3963/j.issn.1674-4861.2019.06.006
ZHOU W, SHI T Y, LI P, et al. Foreign objects detection of safety image of EMU operation based on deep learning[J]. Journal of Transport Information and Safety, 2019, 37(6): 48-55. (in Chinese) doi: 10.3963/j.issn.1674-4861.2019.06.006
|
[12] |
何文玉, 杨杰, 张天露. 基于深度学习的轨道异物入侵检测算法[J]. 计算机工程与设计, 2020, 41(12): 3376-3383. https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ202012046.htm
HE W Y, YANG J, ZHANG T L. Orbital foreign object intrusion detection algorithm based on deep learning[J]. Computer Engineering and Design, 2020, 41(12): 3376-3383. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ202012046.htm
|
[13] |
ZHUANG F, QI Z, DUAN K, et al. A comprehensive survey on transfer learning[J]. Proceedings of the IEEE, 2020, 109(1): 43-76.
|
[14] |
SUNG F, YANG Y, ZHANG L, et al. Learning to compare: Relation network for few-shot learning[C]. Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA: IEEE, 2018.
|
[15] |
ZHOU F, ZHAO H, NIE Z. Safety helmet detection based on YOLOv5[C]. 2021 IEEE International Conference on Power Electronics, Computer Applications(ICPECA), Shenyang, China: IEEE, 2021.
|
[16] |
程健, 王东伟, 杨凌凯, 等. 一种改进的高斯混合模型煤矸石视频检测方法[J]. 中南大学学报(自然科学版), 2018, 49(1): 118-123. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201801016.htm
CHENG J, WANG D W, YANG L K, et al. An improved Gaussian mixture model for coal gangue video detection[J]. Journal of Central South University(Science and Technology), 2018, 49(1): 118-123. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201801016.htm
|
[17] |
郭保青, 杨柳旭, 史红梅, 等. 基于快速背景差分的高速铁路异物侵入检测算法术[J]. 仪器仪表学报, 2016, 37(6): 1371-1378.
GUO B Q, YANG L X, SHI H M, et al. High-speed railway clearance intrusion detection algorithm with fast background subtraction[J]. Chinese Journal of Scientific Instrument, 2016, 37(6): 1371-1378. (in Chinese)
|
[18] |
蔡念, 陈世文, 郭文婷, 等. 融合高斯混合模型和小波变换的运动目标检测[J]. 中国图象图形学报, 2011, 16(9): 1716-1721. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201109025.htm
CAI N, CHEN S W, GUO W T, et al. Moving object detection using Gaussian mixture model and wavelet transform[J]. Journal of Image and Graphics, 2011, 16(9): 1716-1721. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201109025.htm
|
[19] |
WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN[C]. Conference on Computer Vision and Pattern Recognition Workshops, Piscataway: IEEE, 2020.
|
[20] |
HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(9): 1904-1916.
|
[21] |
HAN K, WANG Y, TIAN Q, et al. Ghostnet: More features from cheap operations[C]. Conference on Computer Vision and Pattern Recognition, Piscataway: IEEE, 2020.
|
[22] |
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft coco: Common objects in context[J]. Lecture Notes in Computer Science, 2014(8693): 740-755.
|
[23] |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]. Conference on Computer Vision and Pattern Recognition, Honolulu: IEEE, 2017.
|