Volume 42 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
HU Zhaozheng, CHEN Qili, MENG Jie, HU Huahua, ZHANG Jianan. Multi-LiDAR Roadside Intelligent Perception Method Fusing High-Definition Map[J]. Journal of Transport Information and Safety, 2024, 42(3): 42-52. doi: 10.3963/j.jssn.1674-4861.2024.03.005
Citation: HU Zhaozheng, CHEN Qili, MENG Jie, HU Huahua, ZHANG Jianan. Multi-LiDAR Roadside Intelligent Perception Method Fusing High-Definition Map[J]. Journal of Transport Information and Safety, 2024, 42(3): 42-52. doi: 10.3963/j.jssn.1674-4861.2024.03.005

Multi-LiDAR Roadside Intelligent Perception Method Fusing High-Definition Map

doi: 10.3963/j.jssn.1674-4861.2024.03.005
  • Received Date: 2023-12-19
    Available Online: 2024-10-21
  • In the research of vehicle-road collaborative roadside perception, challenges such as low detection efficiency, unstable target trajectories, and inaccurate tracking arise due to the sheer volume of point cloud data and the inevitable obstruction of targets. To tackle these issues, a method of intelligent roadside perception utilizing multi-LiDAR fused with High-Definition (HD) maps is proposed. The goal is to enhance the accuracy and reliability of perception outcomes by incorporating detailed map information. Leveraging the calibration results of multi-LiDAR, the extraction of the region of interest (ROI) within the three-dimensional point cloud is achieved through HD maps, effectively reducing the quantity of point clouds for processing and enhancing computational efficiency. Employing the polar-image Gaussian mixture model (P-GMM) for background modeling, moving targets are swiftly identified using polar-images to circumvent direct processing of extensive LiDAR point clouds, thereby boosting detection efficiency. By enforcing the alignment between vehicle heading and lane line direction, the lane orientation in the HD map is translated into a linear constraint of vehicle state within the Kalman filter framework, thereby enhancing the efficacy of vehicle detection and trajectory tracking. Experimental validation is conducted using simulated crossroads and real-world roads with double T-shaped intersections. Compared to other methods, the method proposed yielded a 55% reduction in data volume, a 12% increase in target detection accuracy, and a 56% decrease in processing time. The improvements in extreme error, mean error, and root mean square error are also achieved in target tracking. The experimental results show that the method proposed can fuse HD map information effectively, achieving rapid detection and tracking of road-moving targets in a wide range of road scenarios.

     

  • loading
  • [1]
    张亚勤, 李震宇, 尚国斌, 等. 面向自动驾驶的车路云一体化框架[J]. 汽车安全与节能学报, 2023, 14(3): 249-273. doi: 10.3969/j.issn.1674-8484.2023.03.001

    ZHANG Y Q, LI Z Y, SHANG G B, et al. A unified framework for vehicle-infrastructure-cloud autonomous driving[J]. Journal of Automotive Safety and Energy Saving, 2023, 14(3): 249-273. (in Chinese) doi: 10.3969/j.issn.1674-8484.2023.03.001
    [2]
    辜志强, 吉鑫钰, 褚端峰, 等. 基于全局位置精度损失最小化的路侧多传感器目标关联匹配方法[J]. 中国公路学报, 2022, 35(3): 286-294.

    GU Z Q, JI X Y, CHU D F, et al. A roadside multi-sensor target association matching method based on minimization of global position precision loss[J]. China Journal of Highway and Transport, 2022, 35(3): 286-294. (in Chinese)
    [3]
    任柯燕, 谷美颖, 袁正谦, 等. 自动驾驶3D目标检测研究综述[J]. 控制与决策, 2023, 38(4): 865-889.

    REN K Y, GU M Y, YUAN Z Q, et al. 3D object detection algorithms in autonomous driving: a review[J]. Control and Decision, 2023, 38(4): 865-889. (in Chinese)
    [4]
    BELTRAN J, GUNIDEL C, MORENO F M, et al. BirdNet: a 3D object detection framework from LiDAR information[C]. 21st International Conference on Intelligent Transportation Systems(ITSC). Maui, HI: IEEE, 2018.
    [5]
    孙挺, 齐迎春, 耿国华. 基于帧间差分和背景差分的运动目标检测算法[J]. 吉林大学学报(工学版), 2016, 46(4): 1325-1329.

    SUN T, QI Y C, GENG G H. Moving object detection algorithm based on frame difference and background subtraction[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(4): 1325-1329. (in Chinese)
    [6]
    ZHANG Z, ZHENG J, XU H, et al. Automatic background construction and object detection based on roadside LiDAR[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(10): 4086-4097. doi: 10.1109/TITS.2019.2936498
    [7]
    李杰, 张洛维, 王晓燕, 等. 基于视锥距离和自适应权重卡尔曼滤波的多传感器融合算法[J]. 中国公路学报, 2024, 37: 194-203.

    LI J, ZHANG L W, WANG X Y, et al. A multi-sensor fusion algorithm based on view-cone distance and adaptive weighted Kalman filter[J]. China Journal of Highway and Transport, 2024, 37: 194-203. (in Chinese)
    [8]
    徐国艳, 牛欢, 郭宸阳, 等. 基于三维激光点云的目标识别与跟踪研究[J]. 汽车工程, 2020, 42(1): 38-46.

    XU G Y, NIU H, GUO C Y, et al. Research on target recognition and tracking based on 3D laser point cloud[J]. Automotive Engineering, 2020, 42(1): 38-46. (in Chinese)
    [9]
    ZHAO J, XU H, LIU H, et al. Detection and tracking of pedestrians and vehicles using roadside LiDAR sensors[J]. Transportation Research Part C: Emerging Technologies, 2019, 100: 68-87. doi: 10.1016/j.trc.2019.01.007
    [10]
    LIN C, WANG Y, GONG B, et al. Vehicle detection and tracking using low-channel roadside LiDAR[J]. Measurement, 2023, 218: 113159.
    [11]
    YANG B, LIANG M, URTASUN R. HDNET: exploiting HD maps for 3D object detection[C]. 2nd Conference on Robot Learning, Zürich, Switzerland: PMLR, : 2018.
    [12]
    杨振凯, 华一新, 訾璐, 等. 浅析高精度地图发展现状及关键技术[J]. 测绘通报, 2021(6): 54-60.

    YANG Z K, HUA Y X, ZI L, et al. Analysis of the development status and key technologies of high-precision map[J]. Bulletin of Surveying and Mapping, 2021(6): 54-60. (in Chinese)
    [13]
    SEIF H G, HU X. Autonomous driving in the ICity—HD maps as a key challenge of the automotive industry[J]. Engineering, 2016, 2(2): 159-162.
    [14]
    MA W C, URTASUN R, TARTAVULL I, et al. Exploiting sparse semantic HD maps for self-driving vehicle localization[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). Macau, China: IEEE, 2019.
    [15]
    CAI H, HU Z, HUANG G, et al. Integration of GPS, monocular vision, and high definition(HD)map for accurate vehicle localization[J]. Sensors, 2018, 18(10): 3270.
    [16]
    GHALLABI F, NASHASHIBI F, EI-HAJ-SHHADE G, et al. LiDAR-based lane marking detection for vehicle positioning in an HD map[C]. 21st International Conference on Intelligent Transportation Systems(ITSC). Maui, HI: IEEE, 2018.
    [17]
    胡钊政, 孙勋培, 张佳楠, 等. 基于时空图模型的车-路-图协同定位方法[J]. 吉林大学学报(工学版), 2024, 54(5): 1246-1257.

    HU Z Z, SUN X P, ZHANG J N, et al. Vehicle-infrastructure-map cooperative localization method based on spatial-temporal graph model[J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1246-1257. (in Chinese)
    [18]
    BAUER S, ALKHORSHID Y, WANIELIK G. Using high-definition maps for precise urban vehicle localization[C]. 19th International Conference on Intelligent Transportation Systems (ITSC). Rio de Janeiro, Brazil: IEEE, 2016.
    [19]
    JIANG K, YAND D, LIU C, et al. A flexible multi-layer map model designed for lane-level route planning in autonomous vehicles[J]. Engineering, 2019, 5(2): 305-318.
    [20]
    王丞, 田暄, 郭瑞, 等. 自适应Harris角点提取的点云粗配准算法[J]. 西安交通大学学报, 2022, 56(3): 33-44.

    WANG C, TIAN X, GUO R, et al. Coarse point cloud registration based on adaptive Harris corner extraction[J]. Journal of Xi'an Jiaotong University, 2022, 56(3): 33-44. (in Chinese)
    [21]
    叶雅欣, 王佳盛, 吴烽云, 等. 消毒机器人目标识别定位与包围盒优化[J]. 激光与光电子学进展, 2022, 59(4): 346-354.

    YE Y X, WANG J S, WU F Y, et al. Target recognition and localization, bounding box optimization of disinfection robot[J]. Laser & Optoelectronics Progress, 2022, 59(4): 346-354. (in Chinese)
    [22]
    赵洲, 黄攀峰, 陈路. 1种融合卡尔曼滤波的改进时空上下文跟踪算法[J]. 航空学报, 2017, 38(2): 274-284.

    ZHAO Z, HUANG P F, CHEN L. An improved spatiotemporal context tracking algorithm fused with Kalman filter[J]. Journal of Aeronautics, 2017, 38(2): 274-284. (in Chinese)
    [23]
    DOSOVITSKIY A, ROS G, CODEVILLA F, et al. CARLA: An open urban driving simulator[C]. The First Annual Conference on Robot. Machine Learning, Mountain View, California: PMLR, 2017.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(4)

    Article Metrics

    Article views (168) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return