Citation: | ZHANG Rui, WANG Zixuan, KONG Lingzheng, HOU Xianlei. Segmentation of Overtaking Trajectories for Non-motor Vehicles Based on Information Entropy[J]. Journal of Transport Information and Safety, 2024, 42(2): 115-123. doi: 10.3963/j.jssn.1674-4861.2024.02.012 |
[1] |
RAHMANOV M, SHISHKIN A, KOMKOV V, et al. Simulation of pedestrian dynamics based withemantic trajectory segmentation[C]. E3S Web of Conferences, Online: INTERAGROMASH 2022
|
[2] |
HIGGS B, ABBAS M. Segmentation and clustering of car-following behavior : recognition of driving patterns[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(1): 81-90. doi: 10.1109/TITS.2014.2326082
|
[3] |
郭炜强. 面向轨迹大数据的轨迹分段方法研究及系统实现[D]. 北京: 北方工业大学, 2021.
GUO W Q. Research and implementation of trajectory segmentation method for trajectory big data[D]. Beijing: North China University of Technology, 2021. (in Chinese)
|
[4] |
邬婷. 基于分段和分组滤波的细节保留轨迹总结方法[D]. 天津: 天津大学, 2019.
WU T. Detail-Preserving trajectory summarization based on segmentation and group-based filtering[D]. Tianjin: Tianjin university, 2019. (in Chinese)
|
[5] |
KUMAR P, PERROLLAZ M, LEFEVRE S, et al. Learning-based approach for online lane change intention prediction[C]. IEEE Intelligent Vehicles Symposium, Gold Coast City, Australia: IEEE, 2013.
|
[6] |
徐文洁, 赵欣, 酆磊, 等. 基于高精度轨迹数据的车辆换道行为识别研究[J]. 武汉理工大学学报(交通科学与工程版), 2023, 47(2): 239-244, 250. doi: 10.3963/j.issn.2095-3844.2023.02.008
XU W J, ZHAO X, LI F, et al. Research on vehicle lane changing behavior recognition based on high precision trajectory data[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering Edition), 2023, 47(2): 239-244, 250. (in Chinese) doi: 10.3963/j.issn.2095-3844.2023.02.008
|
[7] |
LEE J G, HAN J, WHANG K Y. Trajectory clustering: a partition-and-group framework[C]. Acm Sigmod International Conference on Management of Data, New York, USA: Association for Computing Machinery, 2019.
|
[8] |
YUAN G, XIA S, ZHANG L, et al. An efficient trajectory-clustering algorithm based on an index tree[J]. Transactions of the Institute of Measurement and Control. 2012, 34(7): 850-861. doi: 10.1177/0142331211423284
|
[9] |
宋鑫, 朱宗良, 高银萍, 等. 动态阈值结合全局优化的船舶AIS轨迹在线压缩算法[J]. 计算机科学, 2019, 46(7): 333-338.
SONG X, ZHU Z L, GAO Y P, et al. Online compression algorithm of ship AIS trajectory based on dynamic threshold combined with global optimization[J]. Computer Science, 2019, 46(7): 333-338. (in Chinese)
|
[10] |
何爱林, 周德超, 陈萍, 等. 基于轨迹聚类的运动趋势分析[J]. 海军工程大学学报, 2017, 29(5): 103-107.
HE A L, ZHOU D C, CHEN P, et al. Cluster-based trajectory overall trend extraction[J]. Journal of Naval University of Engineering, 2017, 29(5): 103-107. (in Chinese)
|
[11] |
金佳龙, 周伟, 姜佰辰. 基于行为模式的海上目标轨迹分段算法[J]. 信号处理, 2020, 36(12): 2074-2084.
JIN J L, ZHOU W, JIANG B C. Trajectory segmentation algorithm based on behavior pattern[J]. Journal of Signal Processing, 2020, 36(12): 2074-2084. (in Chinese)
|
[12] |
ZHU F X, MIAO L M, LIU W. Research on vessel trajectory multi-dimensional compression algorithm based on Douglas-Peucker theory[J]. Applied Mechanics and Materials, 2014, 694: 59-62. doi: 10.4028/www.scientific.net/AMM.694.59
|
[13] |
YANG X, TANG L. Crowdsourcing big trace data filtering: a partition-and-filter model[C]. XXⅢ ISPRS Congress Prague, Czech Republic: The International Society of Photogrammetry and Remote Sensing, 2016
|
[14] |
王知昊, 元海文, 李维娜, 等. 交汇水域船舶轨迹预测与航行意图识别[J]. 交通信息与安全, 2022, 40(4): 101-109. doi: 10.3963/j.jssn.1674-4861.2022.04.011
WANG Z H, YUAN H W, LI W N, et al. Vessel trajectory prediction and navigational intent recognition in confluence waters[J]. Journal of Transport Information and Safety, 2022, 40(4): 101-109. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.04.011
|
[15] |
杨家轩, 马令琪. 基于信息熵的船舶轨迹自适应分段压缩算法[J]. 上海海事大学学报, 2022, 43(2): 7-13, 73.
YANG J X, MA L Q. An adaptive segmentation and compression algorithm of ship trajectory based on entropy of information[J]. Journal of Shanghai Maritime University, 2022, 43(2): 7-13, 73. (in Chinese)
|
[16] |
李志斌, 王炜, 赵德, 等. 机非物理分隔道路上自行车超车事件模型[J]. 东南大学学报(自然科学版), 2012, 42(1): 156-161.
LI Z B, WANG W, ZHAO D, et al. Modeling bicycle passing events on physically separated roadways[J]. Journal of Southeast University (Natural Science Edition), 2012, 42 (1): 156-161. (in Chinese)
|
[17] |
柴攀. 城市自行车出行者环境感知与行为研究[D]. 西安: 西安建筑科技大学, 2016.
CHAI P. Research on environmental perception and behavior of urban bicycle travelers[D]. Xi'an: Xi'an University of Architecture and Technology, 2016. (in Chinese)
|
[18] |
陶思然. 基于自行车与电动自行车的二元混合交通流特性研究[D]. 西安: 长安大学, 2015.
TAO S R. Binary mixed traffic characteristics based on bicycle and electric bicycle[D]. Xi'an: Chang'an Univrsity, 2015. (in Chinese)
|
[19] |
王雨楠. 基于轨迹数据的用户行为分析方法研究[D]. 沈阳: 沈阳理工大学, 2020.
WANG Y N. Research on user behavior analysis method based on trajectory data[D]. Shenyang: Shenyang University of Science and Technology, 2020. (in Chinese)
|
[20] |
后旗旸. 基于骑行实验的自行车微观行为研究[D]. 北京: 北京交通大学, 2019.
HOU Q Y. Study on micro-behavior of cyclist under experiment condition[D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese)
|
[21] |
温惠英, 张伟罡, 赵胜. 基于生成对抗网络的车辆换道轨迹预测模型[J]. 华南理工大学学报(自然科学版), 2020, 48(5): 32-40.
WEN H Y, ZHANG W G, ZHAO S. Vehicle lane-change trajectory prediction model based on generative adversarial networks[J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48(5): 32-40. (in Chinese)
|