Citation: | ZHANG Yifan, CHEN Mengda, WANG Lu, CHEN Cong, LIU Kezhong, CHEN Mozi. A Method for Detecting Personnel at Vessel Bridge and Evaluating Level of Activities Based on Channel State Information[J]. Journal of Transport Information and Safety, 2023, 41(4): 88-100. doi: 10.3963/j.jssn.1674-4861.2023.04.010 |
[1] |
EMSA. Review of marine casualties and incidents[EB/OL]. (2019-4-23)[2022-9-23].
|
[2] |
交通运输部海事局. 2018年水上交通安全形势分析[J]. 中国海事, 2019(5): 32-33 https://www.cnki.com.cn/Article/CJFDTOTAL-HSZG201905018.htm
China MSA. Analysis on waterborne transport safety situation for year 2018[J]. China Maritime Safety, 2019(5): 32-33(in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HSZG201905018.htm
|
[3] |
DJANI M, ROBERT M, BARIC M. Deficiencies in learning COLREGs and new teaching methodology for nautical engineering students and seafarers in lifelong learning programs[J]. The Journal of Navigation, 2016, 69(4): 765-776. doi: 10.1017/S037346331500096X
|
[4] |
BERGASA L M, NUEVO J, SOTELO M A, et al. Real-time system for monitoring driver vigilance[J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(1): 63-77. doi: 10.1109/TITS.2006.869598
|
[5] |
MARGARETA L, DUKIC T. Show me where you look and I'll tell you if you're safe: Eye tracking of maritime watchkeepers[C] Nordic Ergonomics Society annual conference, Lysekil, Sweden: Nordic Ergonomics Society, 2007.
|
[6] |
YOUN I H, PARK D J, YIM J B. Analysis of lookout activity in a simulated environment to investigate maritime accidents caused by human error[J]. Applied Sciences, 2018, 9(1): 4-10. doi: 10.3390/app9010004
|
[7] |
杨世超. 基于红外图像的驾驶人疲劳监控系统研究[D]. 沈阳: 东北大学, 2015.
SHI C Y. Research of Driver Fatigue Detecting Based on Infrared Image[D]. Shengyang: Northeastern University, 2011(in Chinese)
|
[8] |
赵晓华, 房瑞雪, 毛科俊. 基于生理信号的驾驶疲劳声音对策有效性实验[J]. 西南交通大学学报, 2010, 45(3): 457-463. doi: 10.3969/j.issn.0258-2724.2010.03.024
ZHAO X H, FANG R X, MAO K J. Test on the effectiveness of sound as a countermeasure against driving fatigue based on physiological signals[J]. Journal of Southwest Jiaotong University, 2010, 45(3): 457-463. (in Chinese) doi: 10.3969/j.issn.0258-2724.2010.03.024
|
[9] |
钟铭恩, 吴平东, 彭军强, 等. 基于脑电信号的驾驶人情绪状态识别研究[J]. 中国安全科学学报, 2011(9): 64-69.
ZHONG M E, WU P D, PENG J Q, et al. Study on an emotional state recognition technology based on drivers'EEGs[J]. China Safety Science Journal, 2011, 21(9): 64-69. (in Chinese)
|
[10] |
周锋, 吴华锋, 孙志宽. 1种新型船舶驾驶台值班防疲劳监控系统设计[J]. 船海工程, 2017, 46(2): 170-174. doi: 10.3963/j.issn.1671-7953.2017.02.040
ZHOU F, WU H F, SUN Z K. Design of bridge navigation watch alarm system based on image processing[J]. Ship & Ocean Engineering, 2017, 46(2): 170-174(in Chinese) doi: 10.3963/j.issn.1671-7953.2017.02.040
|
[11] |
陈家豪, 刘克中, 陈默子, 等. 基于信道状态信息的船舶敏感区域入侵检测方法[J]. 大连海事大学学报, 2019, 45(1): 89-95. https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS201901011.htm
CHEN J H, LIU K Z, CHEN M Z, et al. Intrusion detection method of ships sensitive regions based on channel state information[J]. Journal of Dalian Maritime University, 2019, 45(1): 89-95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS201901011.htm
|
[12] |
CHEN M Z, Ma J, ZENG X M. MD-alarm: A novel manpower detection method for ship bridge watchkeeping using Wi-Fi signals[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71(3): 1-13.
|
[13] |
LIU K Z, WANG Y, CHEN M Z, et al. Deep learning based wireless human motion tracking for mobile ship environments[J]. IEEE Internet of Things Journal, 2022, 23(9): 24186-24198.
|
[14] |
HALPRIN D, HU W, SHETH A, et al. Tool release: Gathering 802.11 n traces with channel state information[J]. ACM SIGCOMM Computer Communication Review, 2011, 41(1): 53-53. doi: 10.1145/1925861.1925870
|
[15] |
陈伟炯. 船舶安全与管理[M]. 大连: 大连海事大学出版社, 1998.
CHEN W J. Ship safety and management[M]. Dalian: Dalian Maritime University Press, 1998. (in Chinese)
|
[16] |
黄琛, 陈德山, 吴兵, 严新平. 船舶航行交通事件实时检测技术研究现状与展望[J]. 交通信息与安全, 2022, 40(6): 1-11. doi: 10.3963/j.jssn.1674-4861.2022.06.001
HUANG C, CHEN D S, WU B, YAN X P. A real-time detection of nautical traffic events: A review and prospect[J]. Journal of Transport Information and Safety, 2022, 40(6): 1-11. doi: 10.3963/j.jssn.1674-4861.2022.06.001
|
[17] |
SIMONE D D, SANCTIC D M, CIANCA E, et al. A trained-once crowd counting method using differential wifi channel state information[C]. A Campus-wide Testbed for Studying Mobile Physical Activities, New York, United States: ACM, 2016.
|
[18] |
QIAN K, WU C S, YANG Z, et al. Widar2.0: Passive human tracking with a single Wi-Fi link[C] ACM International Conference on Mobile Systems, Applications, and Services, New York, United States: ACM, 2016.
|
[19] |
YANG Z, WU D, XIONG J, et al. FarSense: Pushing the range limit of WiFi-based respiration sensing with a CSI ratio of two antennas[J]. International Joint Conference on Pervasive and Ubiquitous Computing, 2019, 3(3): 1-26.
|
[20] |
DAVIES L, GATHER U, The identification of multiple outliers, Journal of the American Statistical Association[J]. Journal of the American Statistical Association, 1993, 88(423): 782-792.
|
[21] |
PAIK B G, CHO S R, PARK B J, et al. Characteristics of wireless sensor network for full-scale ship application[J]. Journal of Marine Science and Technology, 2009, 14(1): 115-126.
|