Citation: | DAI Yuan, LIU Weiming, WANG Heng, XIE Wei, LONG Kejun. A Method for Timely Detecting Foreign Objects between Metro Platform Screen Doors and Train Doors Based on an Improved YOLOv5s Model[J]. Journal of Transport Information and Safety, 2023, 41(2): 18-27. doi: 10.3963/j.jssn.1674-4861.2023.02.002 |
[1] |
刘伟铭, 陈纲梅, 李海玉, 等. 地铁风险空间分析及异物检测系统技术要求[J]. 铁道标准设计, 2019, 63(10): 168-176. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201910032.htm
LIU W M, CHEN G M, LI H Y, et al. Risk space analysis and technical requirements for foreign object detection system[J]. Railway Standard Design, 2019, 63(10): 168-176. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201910032.htm
|
[2] |
上海地铁. "1月22日"情况说明[EB/OL]. (2022-01-25)[2022-08-27].
Shanghai metro. Factsheet for January 22[EB/OL]. (2022-01-25)[2022-08-27].
|
[3] |
李海玉, 刘伟铭, 李军, 等. 曲线地铁站台屏蔽门与列车间异物自动检测装置及方法: 201410314715. 4[P]. 2017-07-07.
LI H Y, LIU W M, LI J, et al. Device and method for automatic detection of foreign objects between platform screen doors of curved metro platforms and trains: 201410314715. 4[P]. 2017-07-07(in Chinese)
|
[4] |
谭飞刚, 刘建. 1种基于计算机视觉的地铁站台异物检测算法[J]. 铁路计算机应用, 2017, 26(1): 67-69. https://www.cnki.com.cn/Article/CJFDTOTAL-TLJS201701020.htm
TAN F G, LIU J. Foreign object detection algorithm for subway platform based on computer vision[J]. Railway Computer Application, 2017, 26(1): 67-69. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLJS201701020.htm
|
[5] |
刘伟铭, 杜逍睿, 李静宁, 等. SOM与HL融合的地铁异物分类算法[J]. 铁道标准设计, 2020, 64(7): 161-165. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202007029.htm
LIU W M, DU X R, LI J N, et al. Subway foreign object classification based on som and hl fusion[J]. Railway Standard Design, 2020, 64(7): 161-165. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202007029.htm
|
[6] |
杨鹏强, 张艳伟, 胡钊政. 基于改进RepVGG网络的车道线检测算法[J]. 交通信息与安全, 2022, 40(2): 73-81. doi: 10.3963/j.jssn.1674-4861.2022.02.009
YANG P Q, ZHANG Y W, HU Z Z. A lane detection algorithm based on improved repvgg network[J]. Journal of Transport Information and Safety, 2022, 40(2): 73-81. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.02.009
|
[7] |
王鹏, 神和龙, 尹勇, 等. 基于深度学习的船舶驾驶员疲劳检测算法[J]. 交通信息与安全, 2022, 40(1): 63-71. doi: 10.3963/j.jssn.1674-4861.2022.01.008
WANG P, SHEN H L, YIN Y, et al. A detection algorithm for the fatigue of ship officers based on deep learning technique[J]. Jour-nal of Transport Information and Safety, 2022, 40(1): 63-71. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.01.008
|
[8] |
崔晓宁, 王起才, 李盛, 等. 基于YOLO-v5的双块式轨枕裂缝智能识别[J]. 铁道学报, 2022, 44(4): 104-111. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202204013.htm
CUI X N, WANG Q C, LI S, et al. Intelligent recognition of cracks in double block sleeper based onYOLO-v5[J]. Journal of the China Railway Society, 2022, 44(4): 104-111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202204013.htm
|
[9] |
DAI Y, LIU W M, LI H Y, et al. Efficient foreign object detection between psds and metro doors via deep neural networks[J]. IEEE Access, 2020(8): 46723-46734.
|
[10] |
刘伟铭, 温俊锐, 郑仲星, 等. 适用于地铁异物前景检测的神经网络: DifferentNet[J]. 华南理工大学学报(自然科学版), 2021, 49(10): 11-21, 40. https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG202110002.htm
LIU W M, WEN J R, ZHENG Z X, et al. Differentnet: neural network for foreign objects foreground detection in metro[J]. Journal of South China University of Technology(Natural Science Edition), 2021, 49(10): 11-21, 40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG202110002.htm
|
[11] |
LIU R K, LIU W M, LI H Y, et al. Metro anomaly detection based on light strip inductive key frame extraction and magan network[J]. IEEE Transactions on Instrumentation and Measurement, 2022(71): 1-14.
|
[12] |
LIU W, ANGUELOV D, ERHAN D, et al. Ssd: single shot multibox detector[C]. The European Conference on Computer Vision, Amsterdam, The Netherlands: Springer, 2016.
|
[13] |
REDMON J, FARHADI A. Yolov3: an incre-mental improvement[EB/OL]. (2018-04-08)[2022-08-27].
|
[14] |
BOCHKOVSKI A, WANG C Y, LIAO H Y. Yolov4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23)[2022-08-27].
|
[15] |
Ultralytics. Yolov5[CP/OL]. (2022-02-0-9)[2022-08-27].
|
[16] |
LI J N, WEI Y C, LIANG X D, et al. Att-entive contexts for object detection[J]. IEEE Transactions on Multimedia, 2017, 19(5): 944-954.
|
[17] |
SEAN B C, LAWRENCE Z, KAVITA B, et al. Inside-outside net: detecting objects in context with skip pooling and recurrent neural networks[C]. The IEEE/CVF conference on Computer Vision and Pattern Recognition, Las Vegas, USA: IEEE, 2016.
|
[18] |
CHEN Q, ZHENG S, JI D, et al. Contextualizing object detection and classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 31(1), 13-27.
|
[19] |
HAN C, LIN J, LIN Y J, et al. Enable deep learning on mobile devices: methods, systems, and applications[J]. ACM Transactions on Design Automation of Electronic Systems, 2022, 27(3): 1-50.
|
[20] |
CAO Y, XU J R, LIN S, et al. Gcnet: non-local networks meet squeeze-excitation networks and beyond[C]. IEEE/CVF International Conference on Computer Vision Workshops, Seoul, Korea(South): IEEE, 2019.
|
[21] |
WANG J, BOHN T A, LING C X. Pelee: a real-time object detection system on mobile devices[C]. Advances in Neural Information Processing Systems, Montréal, Canada: NeurIPS Foundation, 2018.
|
[22] |
WANG C Y, LIAO H Y, WU Y H, et al. Cspnet: a new backbone that can enhance learning capability of cnn[C]. IEEE/CVF conference on Computer Vision and Pattern Recognition workshops, Seattle, USA: IEEE, 2020.
|
[23] |
ZHENG Z H, WANG P, LIU W, et al. Distance-iou loss: faster and better learning for bounding box regression[C]. AAAI Conference on Artificial Intelligence, New York, USA: AAAI, 2020.
|
[24] |
WANG X L, GIRSHICK R B, GUPTA A, et al. Non-local neural networks[C]. IEEE/CVF conference on Computer Vision and Pattern Recognition, Salt Lake City, USA: IEEE, 2018.
|
[25] |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]. IEEE/CVF conference on Computer Vision and Pattern Recognition, Salt Lake City, USA: IEEE, 2018.
|
[26] |
GE Z, LIU S T, WANG F, et al. Yolox: exceeding yolo series in 2021[EB/OL]. (2021-08-06)[2022-08-27].
|
[27] |
SIMONYAN K, ANDREW Z. Very deep convolutional networks for large-scale image recognition[C]. International Conference on Learning Representations, San Diego, USA: ICLR, 2015.
|