留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于强化学习的交叉口智能网联车多目标通行控制方法

姜涵 张健 张海燕 郝威 马昌喜

姜涵, 张健, 张海燕, 郝威, 马昌喜. 基于强化学习的交叉口智能网联车多目标通行控制方法[J]. 交通信息与安全, 2024, 42(1): 84-93. doi: 10.3963/j.jssn.1674-4861.2024.01.010
引用本文: 姜涵, 张健, 张海燕, 郝威, 马昌喜. 基于强化学习的交叉口智能网联车多目标通行控制方法[J]. 交通信息与安全, 2024, 42(1): 84-93. doi: 10.3963/j.jssn.1674-4861.2024.01.010
JIANG Han, ZHANG Jian, ZHANG Haiyan, HAO wei, MA changxi. A Multi-objective Traffic Control Method for Connected and Automated Vehicle at Signalized Intersection Based on Reinforcement Learning[J]. Journal of Transport Information and Safety, 2024, 42(1): 84-93. doi: 10.3963/j.jssn.1674-4861.2024.01.010
Citation: JIANG Han, ZHANG Jian, ZHANG Haiyan, HAO wei, MA changxi. A Multi-objective Traffic Control Method for Connected and Automated Vehicle at Signalized Intersection Based on Reinforcement Learning[J]. Journal of Transport Information and Safety, 2024, 42(1): 84-93. doi: 10.3963/j.jssn.1674-4861.2024.01.010

基于强化学习的交叉口智能网联车多目标通行控制方法

doi: 10.3963/j.jssn.1674-4861.2024.01.010
基金项目: 

国家重点研发计划项目 2021YFB1600504

详细信息
    作者简介:

    姜涵(2000—),硕士研究生. 研究方向:交通管理与控制. E-mail: jianghan@seu.edu.cn

    通讯作者:

    张健(1984—),博士,教授. 研究方向:城市智能交通、车联网与车路协同等. E-mail: jianzhang@seu.edu.cn

  • 中图分类号: U491.4

A Multi-objective Traffic Control Method for Connected and Automated Vehicle at Signalized Intersection Based on Reinforcement Learning

  • 摘要: 针对传统控制方法下的智能网联车辆(connected and autonomous vehicle,CAV)在动态交通环境中通行能耗较高且效率较低等问题,研究了基于强化学习的CAV通行控制方法,旨在降低车辆能源消耗,提升车辆通行效率以及行驶舒适度。通过考虑CAV与交叉口信控系统的信息交互和物理环境,收集信号相位和信号配时(SPaT)以及前车速度和位置等信息,构建强化学习框架的状态空间。以电池能量回收的上限作为边界条件,建立CAV的行驶能耗模型,并基于车辆行驶的关键特征指标,如单位时间电能能耗、通行距离以及加速度变化率,设计多目标加权奖励函数。利用层次分析法确定各指标的权重,进而采用深度确定性策略梯度算法对模型进行训练,并通过梯度下降方法对算法参数进行调整和更新。采用SUMO平台开展仿真实验,实验结果表明:在设计的算法控制下的CAV各方面行驶性能最为均衡,相较于DQN算法电能消耗和加速度变化率均值分别降低了9.22%和18.77%;相较于Krauss跟驰模型行程时间缩短了8.39%。本研究提出的CAV通行控制方法在降低车辆能耗、提高行驶效率和舒适性等方面具有较好的可行性和有效性。

     

  • 图  1  交叉口车辆通行场景示意图

    Figure  1.  Schematic diagram of traffic scene at intersection

    图  2  DDPG算法网络结构

    Figure  2.  Network structure of ddpg algorithm

    图  3  智能网联车控制算法流程图

    Figure  3.  Flow chart of cav control algorithm

    图  4  仿真平台架构

    Figure  4.  Architecture of simulation platform

    图  5  多信号交叉口仿真场景

    Figure  5.  Multi-intersection simulation scene

    图  6  仿真结果分指标对比

    Figure  6.  Comparison of simulation results by indexes

    图  7  不同跟驰模式下CAV行驶轨迹

    Figure  7.  The trajectories of CAV under different car-following modes

    图  8  DDPG控制下CAV沿信号走廊的行驶轨迹

    Figure  8.  The trajectory of CAV along signal corridor under DDPG control

    图  9  不同跟驰模式下CAV行驶速度随时间的变化

    Figure  9.  Variation of CAV's speed with time in different car-following modes

    图  10  不同跟驰模式下CAV加速度变化率随时间的变化

    Figure  10.  Variation of CAV acceleration rate with time in different car-following modes

    表  1  状态空间的参数及含义

    Table  1.   Parameters and description of state space

    参数 含义说明
    车辆速度v(t) 涉及车辆的能耗和效率
    车辆行驶距离d(t) 涉及车辆的能耗和效率
    车辆加速度at 涉及车辆的舒适性。
    前后车速度差Δvt 涉及车辆的安全性
    前后车间隔距离Δxt 涉及车辆的安全性
    交叉口当前相位绿灯剩余时长σ(t) 涉及车辆的效率和安全性。若剩余时长小于车辆以最高允许速度通过交叉口所需时间,则车辆需缓慢减速至停车,否则车辆可适当加速以更快通过交叉口
    下载: 导出CSV

    表  2  各指标相对重要性系数

    Table  2.   Relative importance coefficient of each index

    指标 电能消耗 通行效率 驾驶舒适度 安全性
    电能消耗 1 3 2 1/3
    通行效率 1/3 1 1/2 1/3
    驾驶舒适度 1/2 2 1 1/3
    安全性 3 3 3 1
    下载: 导出CSV

    表  3  仿真参数设置

    Table  3.   Simulation parameter settings

    参数 取值
    道路总长L/m 2 200
    相邻交叉口间距D/m 800
    HV设计小时交通量q/(veh/h) 1 600
    HV车身长度lHV/m 5
    HV车体重量mHV/kg 2 000
    HV驾驶人熟练度sigma 0.5
    HV驾驶人反应时间tau/s 1
    CAV车身长度lCAV/m 5
    CAV车体重量mCAV/kg 2 000
    CAV车辆前表面积SCAV/m2 2.600
    车辆速度v(t)/(km/h) (0, 30)
    车辆行驶距离d(t)/m (0,2 200)
    车辆加速度at/(m/s2 (-4.500,4.500)
    前后车相对速度Δvt/(km/h) (0,30)
    前后车间距Δxt/m (0,300)
    当前相位绿灯剩余时长σ(t)/s (0,40)
    空气阻力系数cd 0.250
    滚动阻力系数cr 0.005
    弯道阻力系数cc 0.300
    能量回收因子μ 0.350
    重力加速度g/(m/s2) 9.800
    下载: 导出CSV

    表  4  不同跟驰模式下的仿真数据

    Table  4.   Simulation data under different car-following modes

    跟驰模式 电能总消耗/Wh 行程时间/s 平均速度/(km/h) 加速度变化率均值/(m/s3
    Krauss 211.326 441 17.959 1.249
    DDPG 217.627 404 19.639 1.199
    DQN 239.185 442 17.918 1.476
    A2C 316.511 478 16.565 2.917
    下载: 导出CSV
  • [1] GABRIEL R D C, PAOLO F, ROBERT H, et al. Traffic coor-dination at road intersections: autonomous decision-making algorithms using model-based heuristics[J]. IEEE Intelligent Transportation Systems Magazine, 2017, 9(1): 8-21. doi: 10.1109/MITS.2016.2630585
    [2] SABOOHI Y, FARZANEH H. Model for developing an eco-driving strategy of a passenger vehicle based on the least fuel consumption[J]. Applied Energy, 2008, 86 (10): 1925-1932.
    [3] 袁伟, 张雅丽, 王虹霞, 等. 纯电动公交车交叉口节能驾驶策略[J]. 中国公路学报, 2021, 34(7): 54-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202107005.htm

    YUAN W, ZHANG Y L, WANG H X, et al. Energy-saving driving technique for pure electric buses in intersection[J]. China Journal of Highway and Transport, 2021, 34(7): 54-66. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202107005.htm
    [4] XIA H, BORIBOONSOMSIN K, BARTH M. Dynamic eco-driving for signalized arterial corridors and its indirect network-wide energy/emissions benefits[J]. Journal of Intelligent Transportation Systems, 2013, 17(1): 31-41. doi: 10.1080/15472450.2012.712494
    [5] WU X K, HE X Z, YU G Z, et al. Energy-optimal speed control for electric vehicles on signalized arterials[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(5): 2786-2796. doi: 10.1109/TITS.2015.2422778
    [6] YANG J, ZHAO D, JIANG J, et al. A less-disturbed ecological driving strategy for connected and automated vehicles[J]. IEEE Transactions on Intelligent Vehicles. 2023, 8(1): 413-424. doi: 10.1109/TIV.2021.3112499
    [7] LI M, WU X K, HE X Z, et al. An eco-driving system for electric vehicles with signal control under V2X environment[J]. Transportation Research Part C: Emerging Technologies, 2018, 93: 335-350. doi: 10.1016/j.trc.2018.06.002
    [8] MOUSA S R, ISHAK S, MOUSA R M, et al. Deep reinforcement learning agent with varying actions strategy for solving the eco-approach and departure problem at signalized intersections[J]. Transportation Research Record: Journal of the Transportation Research Board, 2020, 2674(8): 119-131. doi: 10.1177/0361198120931848
    [9] 吴超仲, 冷姚, 陈志军, 等. 基于强化学习的智能车人机共融转向驾驶决策方法[J]. 交通运输工程学报, 2022, 22(3): 55-67. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202203004.htm

    WU C Z, LENG Y, CHEN Z J, et al. Human-machine integration method for steering decision-making of intelligent vehicle based on reinforcement learning[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 55-67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202203004.htm
    [10] SHI J Q, QIAO F X, LI Q, et al. Application and evaluation of the reinforcement learning approach to eco-driving at intersections under infrastructure-to-vehicle communications[J]. Transportation Research Record: Journal of the Transportation Research Board, 2018, 2672(25): 89-98. doi: 10.1177/0361198118796939
    [11] 陆丽萍, 程垦, 褚端峰, 等. 基于竞争循环双Q网络的自适应交通信号控制[J]. 中国公路学报, 2022, 35(8): 267-277. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202208025.htm

    LU L P, CHENG K, CHU D F, et al. Adaptive traffic signal control based on dueling recurrent double Q network[J]. China Journal of Highway and Transport, 2022, 35(8): 267-277. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202208025.htm
    [12] 陈越, 焦朋朋, 白如玉, 等. 基于深度强化学习的自动驾驶车辆跟驰行为建模[J]. 交通信息与安全, 2023, 41(2): 67-75, 102. doi: 10.3963/j.jssn.1674-4861.2023.02.007

    CHEN Y, JIAO P P, BAI R Y, et al. Modeling car following behavior of autonomous driving vehicles based on deep reinforcement learning[J]. Journal of Transport Information and Safety, 2023, 41(2): 67-75, 102. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.02.007
    [13] WU T, YUAN Y L. Multi-agent deep reinforcement learning for urban traffic light control in vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69 (8): 8243-8256. doi: 10.1109/TVT.2020.2997896
    [14] ZHOU M F, YU Y, QU X B. Development of an efficient driving strategy for connected and automated vehicles at signalized intersections: a reinforcement learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(1): 433-443. doi: 10.1109/TITS.2019.2942014
    [15] GUO Q Q, OHAY A, LIU Z J, et al. Hybrid deep reinforcement learning based eco-driving for low-level connected and automated vehicles along signalized corridors[J]. Transportation Research Part C: Emerging Technologies, 2021, 124: 2-18.
    [16] KURCZVEIL T, LÓPEZ P Á, SCHNIEDER E. Implementation of an energy model and a charging infrastructure in SUMO[C]. Simulation of Urban Mobility User Conference, Berlin, Germany: Springer, 2013.
    [17] ZHAO W M, DONG N, SIMON S, et al. A platoon based co-operative eco-driving model for mixed automated and human-driven vehicles at a signalized intersection[J]. Transportation Research Part C: Emerging Technologies, 2018, 95: 802-821.
    [18] 吕能超, 王玉刚, 周颖, 等. 道路交通安全分析与评价方法综述[J]. 中国公路报, 2023, 36(4): 183-201. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202304016.htm

    LYU N C, WANG Y G, ZHOU Y, et al. Review on road traffic safety analysis and evaluation method[J]. China Journal of Highway and Transport, 2023, 36(4): 183-201. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202304016.htm
    [19] ZHANG J, WU K R, CHENG M, et al. Safety evaluation for connected and autonomous vehicles' exclusive lanes considering penetrate ratios and impact of trucks using surrogate safety measures[J]. Journal of Advanced Transportation, 2020(2): 1-16.
    [20] LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[J]. Computer Science, 2015, 8(6): 1-14.
    [21] GARCIA A G, TRIA L A R, TALAMPAS M C R. Development of an energy-efficient routing algorithm for electric vehicles[C]. 2019 IEEE Transportation Electrification Conference and Expo(ITEC), Michigan, USA: IEEE, 2019.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  183
  • HTML全文浏览量:  114
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-16
  • 网络出版日期:  2024-05-31

目录

    /

    返回文章
    返回