A Study on Longitudinal Collision Risk of Airplanes during Paired Approach Under the Influence of Positioning Error
-
摘要: 近距平行跑道(closely spaced parallel runways,CSPRs)配对进近纵向碰撞风险研究对评估配对进近程序的安全性至关重要,其中定位误差又直接影响配对进近纵向碰撞风险。针对以往研究中缺乏对定位误差分布的实际数据的拟合,进行基于实际数据拟合的定位误差影响下的配对进近纵向碰撞风险研究。根据配对进近的实施流程,建立配对前后机纵向间隔随时间变化的运动学模型。对于飞行过程中定位误差,采用实际航空器定位误差统计数据拟合定位误差分布。基于广播式自动相关监视(ADS-B)数据,对航空器最后进近阶段的纵向定位误差进行拟合分析,匹配出适配程度最佳的分布——正态分布。分别研究配对2架飞机机身之间的碰撞风险和前机尾流与后机机身之间的碰撞风险,确定每类碰撞风险模型中积分区间上下限。在正态分布的基础上结合配对进近2架飞机的运动过程,建立配对进近纵向碰撞风险评估模型。收集2020年12月上海虹桥机场B737-800机型相关参数数据并进行算例分析,对给定初始纵向间隔分别为926 m和2 778 m时,机身碰撞风险(Px1)和尾流碰撞风险(Px2)随时间的变化进行计算仿真,同时进一步仿真分析不同起始纵向间隔与Px1,Px2以及总体纵向碰撞风险最值之间的关系。结果表明:①初始纵向间隔为926 m时,随着时间的增长,Px1逐渐减小,Px2逐渐增大,且Px1远大于Px2;②初始纵向间隔为2 778 m时,结果相反;③ Px1随初始纵向间隔的增加逐渐减小;④ Px2随初始纵向间隔的增加逐渐增大;⑤前后机的总体纵向碰撞风险随初始纵向间隔的增加有先减小后增大的规律,当初始纵向间隔小于2 136 m时纵向碰撞风险主要取决于前后2架飞机机身在纵向上的碰撞风险,反之则取决于前机尾流与后机机身之间的碰撞风险。Abstract: Studying longitudinal collision risk of paired approach on closely spaced parallel runways (CSPRs) is crucial for assessing its safety, where positioning errors directly influence the longitudinal collision risk during the process. Given the lack of consideration on actual data fitting for positioning error distribution in previous studies, this study aims investigate the longitudinal collision risk during paired approach under the influence of actual data-fitted positioning error. According to the implementation process of paired approach, a kinematic model for the longitudinal spacing between aircrafts before and after pairing is established. In terms of positioning error during flight, statistical data of actual aircraft positioning errors are utilized to fit the distribution. Next, utilizing Automatic Dependent Surveillance-Broadcast (ADS-B) data, the longitudinal positioning error during the final approach phase is analyzed and fitted to identify the best-fitting distribution, that is, normal distribution. The collision risk between the aircraft fuselages in paired approach and the collision risk between the wake turbulence of lead aircraft and the fuselage of trailing aircraft are studied separately, and integral intervals for each collision risk model are determined. Based on the normal distribution and the movements of the paired aircrafts during paired approach, an assessment model for the longitudinal collision risk is established. Finally, data about the B737-800 aircraft at Shanghai Hongqiao Airport in December 2020 are collected for a case study. Simulations are conducted to analyze the changes in collision risk of fuselage Px1 and collision risk of wake turbulence Px2 over time under the initial longitudinal separations of 926 m and 2 778 m. Further, the relationship between different initial longitudinal separations and Px1 / Px2 or the maximum value of overall longitudinal collision risk. The results indicate that: ①when the initial longitudinal separation is 926 m, Px1 gradually decreases while Px2 increases over time, and Px1 is significantly greater than Px2. ②When the initial longitudinal separation is 2 778 m, the results are the opposite. ③ Px1 decreases while Px2 increases as the initial longitudinal separation increases. ④The overall longitudinal collision risk between the lead and trailing aircrafts decreases first and then increases with increasing initial longitudinal separation; ⑤when the initial longitudinal separation is smaller than 2 136 m, the longitudinal collision risk is primarily determined by the collision risk between the fuselages of lead and trailing aircrafts; when the initial longitudinal separation is larger than 2 136 m, it is determined by the collision risk between the wake turbulence of lead aircraft and the fuselage of trailing aircraft.
-
表 1 配对进近相关参数符号定义
Table 1. Definition of symbols of paired approach related parameters
参数 符号定义 数值 单位 参数 符号定义 数值 单位 vli 前机起始配对进近速度 73.89 m/s hTHR 前机跑道入口高度 15 m vti 后机起始配对进近速度 73.89 m/s tlu 前机匀速运动时间 — — vlf 前机最后配对进近速度 68.92 m/s ttu 后机匀速运动时间 — — vtf 后机最后配对进近速度 69.46 m/s Sl 前机全程飞行距离 — — al 前机加速度 -0.076 m/s2 S0 配对飞机起始纵向间隔 — — at 后机加速度 -0.076 m/s2 D 近距平行跑道中心线之间距离 365 m tld 前机匀减速运动时间 — — Wt 后机翼展 35.8 m ttd 后机匀减速运动时间 — — Wl 前机翼展 35.8 m α 前机下滑角 3 (°) Fl 前机机身长度 39.5 m β 后机下滑角 3 (°) Ft 后机机身长度 39.5 m γ 后机侧向偏置角 3 (°) vw 侧风风速 3 m/s St 后机侧向偏置结束至跑道入口距离 1 389 m θ 侧风风向 90 (°) ttous 后机侧向偏置进近匀速运动时间 — — vg 地面效应作用下尾流侧向移动速度 2 m/s hSAP 前机稳定进近定位点高度 305 m 注:“—”代表数据不可直接获得。 表 2 纵向碰撞风险模型相关参数取值
Table 2. Values of related parameters of longitudinal collision risk model
参数 数值 参数 数值 μ11 123.8 Smin 1 /m -39.5 σ11 112.86 Smax 1 /m 39.5 μ12 123.8 Smin 2 /m 4 234.99 σ12 112.86 Smax 2 /m 12 000 -
[1] 杨骁勇, 张辉, 刘尚豫, 等. 航空安全领域研究进展可视化综述[J]. 交通信息与安全, 2021, 39(3): 8-16. doi: 10.3963/j.jssn.1674-4861.2021.03.002YANG X Y, ZHANG H, LIU S Y, et al. A visualized review of research progress in aviation safety[J]. Journal of Transport Information and Safety, 2021, 39(3): 8-16. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.03.002 [2] HAMMER J. Case study of paired approach procedure to closely spaced parallel runways[J]. Air Traffic Control Quarterly, 2000, 8(3): 223-252. doi: 10.2514/atcq.8.3.223 [3] LANDRY S, PRICHETT A R. The safe zone for paired closely spaced parallel approaches: implications for procedures and automation[C]. 19th Digital Avionics Systems Conference. Philadelphia, PA, USA: IEEE, 2000. [4] CARPENTER B, KUCHAR J, CARPENTER B, et al. Probability-based collision alerting logic for closely spaced parallel approach[C]. 35th Aerospace Sciences Meeting and Exhibit. Reno, NV, USA: AIAA, 1997. [5] BURNHAM D C, HALLOCK J N, GREENE G C. Wake turbulence limits on paired approaches to parallel runways[J]. Journal of Aircraft, 2002, 39(4): 630-637. doi: 10.2514/2.2975 [6] EFTEKARI R R, HAMMER J B, HAVENS D A, et al. Feasibility analyses for paired approach procedures for closely spaced parallel runways[C]. 2011 Integrated Communications, Navigation, and Surveillance Conference. Herndon, VA, USA: IEEE, 2011. [7] TEO R, TOMLIN C J. Computing danger zones for provably safe closely spaced parallel approaches[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(3): 434-442. doi: 10.2514/2.5081 [8] MCKISSICK B. Wake encounter analysis for aclosely spaced parallel runway paired approach simulation[C]. 9th AIAAAviation Technology, Integration, and Operations Conference (ATIO)and Aircraft Noise and Emissions Reduction Symposium(ANERS). Hilton Head, SC, USA: AIAA, 2009. [9] GEYER M, SOARES M, BARNES S, et al. RNAV(GPS)total system error models for use in wake encounter risk analysis of depenent paired approaches to closely-spaced parallelrunways[R]. Cambridge: John A. Volpe National Transportation Systems Center, 2014. [10] KENNETH L, STEPH P, PAUL H, et al. Paired approach flight demonstration: Planning and development activities[C]. 2018 Integrated Communications, Navigation & Surveillance Conference. Washington, D. C. USA: AIAA, 2018. [11] KENNETH L, MARY E M, CURT K, et al. Paired approach flight demonstration results[C]. 2019 Integrated Communications, Navigation & Surveillance Conference. Washington, D. C. USA: AIAA, 2019. [12] 胡明华, 田勇, 李凯. 机场近距平行跑道进近方法研究[J]. 交通运输工程与信息学报, 2003, 1(1): 64-69, 117. https://www.cnki.com.cn/Article/CJFDTOTAL-JTGC200301009.htmHU M H, TIAN Y, LI K. Study of approach procedure to closely spaced parallel runways[J]. Journal of Transportation Engineering and Information, 2003, 1(1): 64-69, 117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTGC200301009.htm [13] 卢飞, 张兆宁, 魏志强, 等. 近距平行跑道配对进近纵向碰撞风险安全评估[J]. 中国安全科学学报, 2013, 23(8): 108-113. doi: 10.3969/j.issn.1003-3033.2013.08.018LU F, ZHANG Z N, WEI Z Q, et al. Longitud inal collision risk safety assessment of paired approach to closed spaced parallel runways[J]. China Safety Science Journal, 2013, 23 (8): 108-113. (in Chinese) doi: 10.3969/j.issn.1003-3033.2013.08.018 [14] 卢飞, 朱楠, 杨斯, 等. 近距平行跑道配对进近侧向碰撞风险评估[J]. 中国安全科学学报, 2016, 26(11): 87-92. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201611019.htmLU F, ZHU N, YANG S, et al. Assessment of lateral collision risk in closed spaced parallel runways paired approach[J]. China Safety Science Journal, 2016, 26(11): 87-92. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201611019.htm [15] 孙佳, 田勇. 近距平行跑道配对进近中的碰撞风险分析[J]. 哈尔滨商业大学学报(自然科学版), 2014, 30(2): 241-245. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJS201402029.htmSUN J, TIAN Y. Collision risk analysis in close spaced parallel runway paired approaches[J]. Journal of Harbin University of Commerce, 2014, 30(2): 241-245. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLJS201402029.htm [16] 牛夏蕾, 吕宗平, 张兆宁. 近距平行跑道配对进近最小跟驰距离的计算[J]. 航空计算技术, 2015, 45(4): 46-48. https://www.cnki.com.cn/Article/CJFDTOTAL-HKJJ201504012.htmNIU X L, LYU Z P, ZHNAG Z N. Minimum in-trail distance for paired closely spaced parallel[J]. Aeronautical Computing Technique, 2015, 45(4): 46-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKJJ201504012.htm [17] 吕宗平, 张兆宁, 牛夏蕾. 基于速度和导航误差的配对进近碰撞风险研究[J]. 航空计算技术, 2015, 45(6): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-HKJJ201506009.htmLYU Z P, ZHANG Z N, NIU X L. Collision risk safety assessment of paired approach basd on velocity error and positioning error[J]. Aeronautical Computing Technique, 2015, 45(6): 36-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKJJ201506009.htm [18] 卢飞, 滕景杰, 吴俊, 等. 尾流影响下的CSPRs配对进近侧向碰撞风险分析[J]. 中国安全科学学报, 2020, 30(2): 99-105. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202002017.htmLU F, TENG J J, WU J, et al. Lateral collision risk of CSPRs paired approach under wake impact[J]. China Safety Science Journal, 2020, 30(2): 99-105. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202002017.htm [19] 卢飞, 滕景杰, 吴俊, 等. 尾涡流场影响下的CSPRs配对进近侧向碰撞动力学分析[J]. 中国安全科学学报, 2020, 30 (4): 21-27. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202004004.htmLU F, TENG J J, WU J, et al. Lateral collision dynamics of CSPRs paired approach under influence of wake vortex field[J]. China Safety Science Journal, 2020, 30(4): 21-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202004004.htm [20] 田勇, 颜于杰, 万莉莉, 等. 近距平行跑道配对进近运行间隔研究[J]. 航空计算技术, 2015, 45(5): 11-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HKJJ201505004.htmTIAN Y, YAN Y J, WAN L L, et al. Research on separation of aircrafts for paired approaches to closely spaced parallel runways[J]. A eronautical Computing Technique, 2015, 45 (5): 11-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKJJ201505004.htm [21] 中国民用航空局. 中国民用航空局令第190号: CCAR-93TM-R4[S]. 北京: 中国民用航空总局, 2007.Civil Aviation Administration of China. Decree of Civil Aviation Administration of China No. 190: CCAR-93TM-R4[S]. Beijing: Civil Aviation Administration of China, 2007. (in Chinese) [22] ROSSOW V J, MEYN L A. Relationship between vortex meander and ambient turbulence: AIAA-2006-7811[R]. Reston: AIAA, 2006. [23] KENNETH L, MARY E M, CURT K, et al. Paired approach flight demonstration results[C]. 2019 Integrated Communications, Navigation and Surveillance Conference, New York: AIAA, 2019.