留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于语义分割与道路结构的车道线检测方法

丁玲 肖进胜 李必军 李亮 陈宇 胡罗凯

丁玲, 肖进胜, 李必军, 李亮, 陈宇, 胡罗凯. 基于语义分割与道路结构的车道线检测方法[J]. 交通信息与安全, 2023, 41(3): 103-110. doi: 10.3963/j.jssn.1674-4861.2023.03.011
引用本文: 丁玲, 肖进胜, 李必军, 李亮, 陈宇, 胡罗凯. 基于语义分割与道路结构的车道线检测方法[J]. 交通信息与安全, 2023, 41(3): 103-110. doi: 10.3963/j.jssn.1674-4861.2023.03.011
DING Ling, XIAO Jinsheng, LI Bijun, LI Liang, CHEN Yu, HU Luokai. Lane Detection Method Based on Semantic Segmentation and Road Structure[J]. Journal of Transport Information and Safety, 2023, 41(3): 103-110. doi: 10.3963/j.jssn.1674-4861.2023.03.011
Citation: DING Ling, XIAO Jinsheng, LI Bijun, LI Liang, CHEN Yu, HU Luokai. Lane Detection Method Based on Semantic Segmentation and Road Structure[J]. Journal of Transport Information and Safety, 2023, 41(3): 103-110. doi: 10.3963/j.jssn.1674-4861.2023.03.011

基于语义分割与道路结构的车道线检测方法

doi: 10.3963/j.jssn.1674-4861.2023.03.011
基金项目: 

国家自然科学基金面上项目 41671441

湖北省教育厅科学技术研究计划中青年人才项目 Q20143005

湖北省高校中青年科技创新团队项目 T201818

湖北省教育厅科研计划项目 B2021261

详细信息
    作者简介:

    丁玲(1979—),博士,副教授. 研究方向:智能交通、计算机视觉。E-mail:dn0715dn@163.com

    通讯作者:

    肖进胜(1975—),博士,副教授. 研究方向:智能交通、计算机视觉。E-mail:xiaojs@whu.edu.cn

  • 中图分类号: U495

Lane Detection Method Based on Semantic Segmentation and Road Structure

  • 摘要: 车道线的准确检测对于智能辅助驾驶和车道偏离预警系统的性能有着非常重要的作用,当前的传统研究方法普遍存在对复杂道路环境的适应性不够,检测精度有待提高等问题。针对复杂交通环境的车道线检测问题,充分考虑到复杂道路结构的语义信息,提出了1种基于语义分割与道路结构的车道线检测方法。该算法采用Encoder-Decoder的基础网络结构模式,通过改进实现语义分割,利用池化层的索引功能,以反池化的方式进行上采样,在每个上采样之后连接多个卷积层。然后再使用标准交叉熵损失函数训练分割网络,利用深度学习方法得到排除外部环境干扰的道路分割图像,并对分割后的道路图像进行透视变换,采用Hough变换和边缘点的参数空间投票,快速提取和修正车道线左右边缘点,将提取的边缘点进行贝塞尔曲线拟合,实现车道线的平滑显示。提出的算法在相关车道线数据集上进行了训练和测试,与基于参数空间投票方法相比,准确度提升5.1%,时间平均增加了8 ms;与卷积神经网络(convolutional neural networks,CNN)方法相比,准确度降低了1.75%,时间平均减少了6.2 ms。测试结果表明,利用提出的语义分割编解码网络有助于优化模型结构,在满足实时检测要求的基础上降低了对计算硬件资源的需求。

     

  • 图  1  本文算法结构框架图

    Figure  1.  Algorithmic structure frame work diagram

    图  2  解码器网络结构(上分支完成语义分割)

    Figure  2.  Decoder network structure (upper branch completes semantic segmentation)

    图  3  编码器网络结构图

    Figure  3.  Encoder network structure

    图  4  分割效果图

    Figure  4.  image segmentation

    图  5  语义分割与边缘特征提取图

    Figure  5.  Semantic segmentation and edge feature extraction plots

    图  6  Hough原理图和参数空间投票图

    Figure  6.  Hough Schematic and parameter space voting

    图  7  内侧边缘点提取图

    Figure  7.  Inner edge point extraction

    图  8  检测结果

    Figure  8.  detection result

    图  9  复杂街道环境中实验结果图

    Figure  9.  Experimental results in a complex street environment

    图  10  强光与阴影下实验结果图

    Figure  10.  Experimental results in strong light and shadow

    图  11  隧道中实验结果图

    Figure  11.  Experimental results in the tunnel

    图  12  雨天实验结果图

    Figure  12.  Experimental results of rainy days

    图  13  夜间实验结果图

    Figure  13.  Results of the night experiment

    图  14  误检与漏检实验结果

    Figure  14.  Results of mistest and missed test experiments

    图  15  本文算法与文献[19]检测对比图

    Figure  15.  This algorithm compares the test with detection in the reference [19]

    图  16  本文算法与文献[6]检测效果图

    Figure  16.  The results of the algorithm and reference [6]

    表  1  语义分割网络结构具体参数设置表

    Table  1.   Specific parameter setting of the semantic segmentation network structure

    类型 卷积核 步长 输出
    covl_1 3×3 1 512×256×64
    covl_1 3×3 1 512×256×64
    Pool1, max, indices 2×2 2 256×128×64
    covl_1 3×3 1 256×128×128
    covl_1 3×3 1 256×128×128
    Pool2, max, indices 2×2 2 128×64×128
    covl_1 3×3 1 128×64×256
    covl_1 3×3 1 128×64×256
    covl_1 3×3 1 128×64×256
    Pool3, max, indices 2×2 2 64×32×256
    covl_1 3×3 1 64×32×512
    covl_1 3×3 1 64×32×512
    covl_1 3×3 1 64×32×512
    Pool4, max, indices 2×2 2 32×16×512
    Dilated conv5_1 3×3 1 32×16×512
    Dilated conv5_2 3×3 1 32×16×512
    Dilated conv5_3 3×3 1 32×16×512
    下载: 导出CSV

    表  2  车道线识别统计

    Table  2.   Lane recognition statistics

    视频序号 总帧数 识别率/% 平均耗时/ms
    白天1 1 653 93.8 30.5
    白天2 1 784 94.1 31.2
    白天3 1 452 93.6 31.8
    白天4 1 645 94.3 30.9
    白天5 1 542 93.2 30.4
    白天6 1 265 92.9 31.3
    雨天 793 87.2 31.6
    夜晚 1 203 85.9 31.9
    下载: 导出CSV

    表  3  算法对比结果

    Table  3.   Lane recognition statistics

    数据集 识别率/% 平均每帧时间/ms
    序号 帧数 文献[19] 本文 文献[6] 文献[19] 本文 文献[6]
    1 1 265 90.2 94.3 95.8 12.1 29.9 44.1
    2 1 319 88.9 93.4 95.1 10.9 30.1 44.3
    3 1 246 87.2 94.1 96.0 11.2 29.8 43.9
    4 983 90.4 95.3 97.2 13.0 30.4 44.6
    下载: 导出CSV

    表  4  左右测距对比结果

    Table  4.   Left and right distance comparison results

    算法名称 调和平均值
    文献[19] 0.761
    本文 0.828
    文献[6] 0.830
    下载: 导出CSV
  • [1] KUSANO K D, GABLER H C. Comparison of expected crash and injury reduction from production forward collision and lane departure warning systems[J]. Journal of Crash Prevention & Injury Control, 2015, 16(2): 109-114.
    [2] ABRAMOV A, BAYER C, HELLER C, et al. Multi-lane perception using feature fusion based on GraphSLAM[C]. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS), Daejeon, Korea(South): IEEE, 2016.
    [3] LI Q, ZHOU J, LI B J, et al. Robust lane-detection method for low-speed environments[J]. Sensors, 2018, 18(12): 4274. doi: 10.3390/s18124274
    [4] NEVEN D, BRABANDERE B D, GEORGOULIS S, et al. Towards end-to-end lane detection: an instance segmentation approach[C]. IEEE Intelligent Vehicles Symposium, Changshu, China: IEEE, 2018.
    [5] NAROTE S P, BHUJBAL P N, NAROTE A S, et al. A review of recent advances in lane detection and departure warning system[J]. Pattern Recognition, 2018, 1(73): 216-234.
    [6] DING L, ZHANG H Y, XIAO J S, et al. A lane detection method based on semantic segmentation[J]. Computer Modeling in Engineering & Sciences, 2020, 122(3): 1039-1053.
    [7] NAVARRO J, DENIELl J, YOUSFI E, et al. Influence of lane departure warnings onset and reliability on car drivers' behaviors. [J]. Applied Ergonomics, 2017: 123-131.
    [8] KAZEMI M, BALEGHI Y. L*a*b* color model based road lane detection in autonomous vehicles[J]. Bangladesh Journal of Scientific and Industrial Research, 2017, 52(4): 273-280. doi: 10.3329/bjsir.v52i4.34814
    [9] XIAO J, LUO L, YAO Y, et al. Lane detection based on road module and extended Kalman filter[C]. Pacific-Rim Symposium on Image and Video Technology, Wuhan, China: IEEE, 2017.
    [10] 刘彬, 刘宏哲. 基于改进Enet网络的车道线检测算法[J]. 计算机科学, 2020, 47(4): 142-149. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA202004023.htm

    LIU B, LIU H Z. Lane detection algorithm based on improved enet network[J]. Computer Science, 2020, 47(4): 142-149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA202004023.htm
    [11] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
    [12] DING L, XU Z R, ZONG J F, et al. A lane line detection algorithm based on convolutional neural network[C]. Geometry and Vision First International Symposium, Auckland, New Zealand: IEEE, 2021.
    [13] GAIKWAD V, LOKHANDE S D. Lane departure identification for advanced driver assistance[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2): 910-918.
    [14] 周经美, 王钰, 宁航, 等. 面向多元场景结合GLNet的车道线检测算法[J]. 中国公路学报, 2021, 34(7): 118-127. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202107010.htm

    ZHOU J M, WANG Y, NING H, et al. Lane detection algorithm based on GLNet for multiple scenes[J]. China Journal of Highway and Transport, 2021, 34(7): 118-127. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202107010.htm
    [15] PAN X, SHI J, LUO P, et al. Spatial as deep: spatial CNN for traffic scene understanding[C]. 32nd AAAI Conference on Artificial Intelligence, New Orleans, LA, United States: IEEE, 2018.
    [16] 杨鹏强, 张艳伟, 胡钊政. 基于改进RepVGG网络的车道线检测算法[J]. 交通信息与安全, 2022, 40(2): 73-81. doi: 10.3963/j.jssn.1674-4861.2022.02.009

    YANG P Q, ZHANG Y W, HU Z Z. Lane-line detection algorithm based on an improved RepVGG network[J]. Journal of Transport Information and Safety, 2022, 40(2): 73-81. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.02.009
    [17] HOU Y, MA Z, LIU C, et al. Learning lightweight lane detection CNNs by self attention distillation[C]. International Conference on Computer Vision, Seoul, Korea: IEEE, 2019.
    [18] HAO T, XU X L, QI L Y, et al. Edge computation offloading and caching for self-driving with deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2021, 12 (70): 13281-13293.
    [19] 彭红, 肖进胜, 程显. 基于扩展卡尔曼滤波器的车道线检测算法[J]. 光电子·激光, 2015(3): 567-574.

    PENG H, XIAO J S, CHENG X. Lane detection algorithm based on extended Kalman filter[J]. Journal of Optoelectronics·Laser, 2015(3): 567-574. (in Chinese)
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  599
  • HTML全文浏览量:  279
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-09
  • 网络出版日期:  2023-09-16

目录

    /

    返回文章
    返回