留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于小波优化GRU-ARMA模型的空中交通流量短时预测方法

闫少华 谢晓璇 张兆宁

闫少华, 谢晓璇, 张兆宁. 基于小波优化GRU-ARMA模型的空中交通流量短时预测方法[J]. 交通信息与安全, 2022, 40(4): 177-184. doi: 10.3963/j.jssn.1674-4861.2022.04.019
引用本文: 闫少华, 谢晓璇, 张兆宁. 基于小波优化GRU-ARMA模型的空中交通流量短时预测方法[J]. 交通信息与安全, 2022, 40(4): 177-184. doi: 10.3963/j.jssn.1674-4861.2022.04.019
YAN Shaohua, XIE Xiaoxuan, ZHANG Zhaoning. A Short-term Prediction of Air Traffic Flow Based on a Wavelet-optimized GRU-ARMA Model[J]. Journal of Transport Information and Safety, 2022, 40(4): 177-184. doi: 10.3963/j.jssn.1674-4861.2022.04.019
Citation: YAN Shaohua, XIE Xiaoxuan, ZHANG Zhaoning. A Short-term Prediction of Air Traffic Flow Based on a Wavelet-optimized GRU-ARMA Model[J]. Journal of Transport Information and Safety, 2022, 40(4): 177-184. doi: 10.3963/j.jssn.1674-4861.2022.04.019

基于小波优化GRU-ARMA模型的空中交通流量短时预测方法

doi: 10.3963/j.jssn.1674-4861.2022.04.019
基金项目: 

国家重点研发计划项目 2020YFB1600103

详细信息
    作者简介:

    闫少华(1964—),硕士,副教授. 研究方向:空中交通管理、航空安全管理. E-mail: shyan@cauc.edu.cn

    通讯作者:

    张兆宁(1964—),博士,教授. 研究方向:交通运输规划与管理. E-mail: zzhaoning@263.net

  • 中图分类号: V355.1

A Short-term Prediction of Air Traffic Flow Based on a Wavelet-optimized GRU-ARMA Model

  • 摘要: 空中交通流量短时预测是空中交通管理的基础,是有效缓解交通拥堵问题的前提。为提高空中交通流量短时预测的精度,减小空中交通管制员的工作压力,提出了基于小波优化GRU-ARMA的空中交通流量短时预测方法。在传统预测方法的基础上,通过小波变换对原始流量数据进行多尺度分解,提取不同频率交通流量的细节特征,对原始流量数据进行预处理。同时,根据小波变换,在低频处将频率细分作为趋势项,高频处将时间细分作为噪声项。其中,趋势项反映了空中交通流量随时间演化的整体趋势性,噪声项反映了随机因素对空中交通流量的综合影响。使用门控循环单元(GRU)神经网络模型预测趋势项,自回归滑动平均模型(ARMA)模型预测噪声项;将趋势项和噪声项的预测值叠加,得到最终的短时流量预测值。误差分析表明,该方法在每个预测点上的误差保持在2%左右,预测效果稳定;而直接采用原始流量数据进行预测的GRU、BiLSTM、CNN-LSTM神经网络模型及单一的ARMA模型,每个点的预测误差在5%~37.14%之间。与GRU、BiLSTM、CNN-LSTM神经网络模型相比,该模型的预测精度分别提高了3.02%,5.39%,5.05%。

     

  • 图  1  GRU算法原理图

    Figure  1.  The structure of Gated Recurrent Unit (GRU)

    图  2  基于小波优化GRU-ARMA模型的空中交通流量短时预测流程

    Figure  2.  Short term air traffic flow frediction process based on Wavelet-Optimized GRU-ARMA model

    图  3  小波基函数信噪比

    Figure  3.  Signal noise ratio of wavelet basis function

    图  4  原始流量时间序列小波分解图

    Figure  4.  Wavelet decomposition of original traffic time series

    图  5  GRU神经网络loss曲线图

    Figure  5.  Loss graph of GRU

    图  6  趋势项预测结果

    Figure  6.  Prediction results of trend items

    图  7  噪声项ARMA定阶热力图

    Figure  7.  ARMA thermal diagram of noise term

    图  8  小波优化GRU-ARMA预测结果

    Figure  8.  Prediction results of the wavelet-optimized GRU-ARMA model

    图  9  不同模型预测结果

    Figure  9.  Prediction results of different models

    图  10  5种模型误差对比

    Figure  10.  Error comparison of five models

    表  1  不同分解层数信噪比对比

    Table  1.   Comparison of different decomposition layers of signal-to-noise ratio

    小波基函数 分解层数 信噪比
    bior2.2 3 24.195 0
    4 24.175 6
    5 24.174 6
    db3 3 21.701 3
    4 21.663 6
    5 21.639 2
    sym4 3 22.383 5
    4 22.336 5
    5 22.332 5
    下载: 导出CSV

    表  2  不同置信区间对应的临界ADF

    Table  2.   Corresponding critical ADF value under different confidence intervals

    置信区间 临界ADF
    99% -3.430 9
    95% -2.861 8
    90% -2.566 9
    下载: 导出CSV

    表  3  5种模型的评价指标

    Table  3.   Evaluation indexes of four models

    预测模型 评价指标
    RMSE MAE MAPE/%
    小波优化GRU-ARMA 1.338 0.958 1.74
    GRU 3.234 2.542 4.76
    BiLSTM 4.996 3.958 7.13
    CNN-LSTM 4.601 3.667 6.79
    ARMA 5.208 3.33 6.04
    下载: 导出CSV
  • [1] 王剑辉, 朱晓波, 夏正洪, 等. 基于知识图谱的国内空中交通管理研究可视化分析[J]. 交通信息与安全, 2019, 37(6): 11-19. doi: 10.3963/j.issn.1674-4861.2019.06.002

    WANG J H, ZHU X B, XIA Z H, et al. A visualization analysis of domestic air traffic management based on mapping knowledge domains[J]. Journal of Transport Information and Safety, 2019, 37(6): 11-19. (in Chinese) doi: 10.3963/j.issn.1674-4861.2019.06.002
    [2] 陈恺, 曾培彬, 蔡浩. 改进型空中交通流量预测算法的验证与实现[J]. 计算机测量与控制, 2020, 28(12): 267-272. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK202012055.htm

    CHEN K, ZENG P L, CAI H. Verification and implementation of improved air traffic flow prediction method[J]. Computer Measurement and Control, 2020, 28(12): 267-272. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK202012055.htm
    [3] 毛阿芳. 基于数据挖掘的四维航迹预测技术研究[D]. 唐山: 华北理工大学, 2021.

    MAO A F. Research on 4D track prediction technology based on data mining[D]. Tangshan: North China University of Science and Technology, 2021. (in Chinese)
    [4] PANG Y, LIU Y. Probabilistic aircraft trajectory prediction considering weather uncertainties using dropout as bayesian approximate variational inference[C]. AIAA Scitech 2020 Forum, Orlando, FL: AIAA, 2020.
    [5] LI S M, XU X H, MENG L H. Flight conflict fo recasting based on chaotic time series[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2012, 29 (4): 388-394.
    [6] CONG W, HU M H. Chaotic characteristic analysis of air traffic system[J]. Transactions of Nanjing University of Aeronautics and Astronautics: 2014, 31(6): 636-642.
    [7] 王超, 郑旭芳, 王蕾. 交汇航路空中交通流的非线性特征研究[J]. 西南交通大学学报, 2017, 52(1): 171-178. doi: 10.3969/j.issn.0258-2724.2017.01.024

    WANG C, ZHENG X F, WANG L. Research on nonlinear characteristics of air traffic flows on converging air routes[J]. Journal of Southwest Jiaotong University, 2017, 52(1): 171-178. (in Chinese) doi: 10.3969/j.issn.0258-2724.2017.01.024
    [8] 王飞. 空中交通流非线性分形特征[J]. 西南交通大学学报, 2019, 54(6): 1147-1154. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201906004.htm

    WANG F. Nonlinear fractal characteristics of air traffic flow[J]. Journal of Southwest Jiaotong University, 2019, 54 (6): 1147-1154. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201906004.htm
    [9] 王飞. 基于Hurst指数的空中交通流长相关性实证分析[J]. 中国民航大学学报, 2019, 37(2): 1-4. doi: 10.3969/j.issn.1674-5590.2019.02.001

    WANG F. Empirical analysis on air traffic flow long phase correlation based on Hurst exponent[J]. Journal of Civil Aviation University of China, 2019, 37(2): 1-4. (in Chinese) doi: 10.3969/j.issn.1674-5590.2019.02.001
    [10] 杨阳. 空中交通流量短期预测方法研究[D]. 天津: 中国民航大学, 2017.

    YANG Y. Research on short term forecasting method of air traffic flow[D]. Tianjin: Civil Aviation University of China, 2017. in Chinese
    [11] 王飞, 韩翔宇. 基于分形插值的空中交通流量短期预测[J/OL]. (2021-07)[2022-07-15]. http://kns.cnki.net/kcms/detail/11.1929.v.20210720.1106.016.html.

    WANG F, HAN X Y. Short-term prediction of air traffic flow based on fractal interpolation[J/OL]. (2021-07)[2022-07-15]. http://kns.cnki.net/kcms/detail/11.1929.v.20210720.1106.016.html. (in Chinese)
    [12] 张兆宁, 张莹莹, 冀姗姗. 基于GA-BP神经网络的空中交通网络流系统拥堵预测[J]. 中国民航大学学报, 2021, 39(3): 1-5. doi: 10.3969/j.issn.1674-5590.2021.03.001

    ZHANG Z N, ZHANG Y Y, JI S S, Congestion prediction of flow system of air traffic network based on GA-BP neural network[J]. Journal of Civil Aviation University of China, 2021, 39(3): 1-5. (in Chinese) doi: 10.3969/j.issn.1674-5590.2021.03.001
    [13] 赵元棣, 陈俊夫, 刘泽宇, 等. 基于K近邻模型的空中交通流量短期预测[J]. 中国民航大学学报, 2017, 35(5): 1-5+11. doi: 10.3969/j.issn.1674-5590.2017.05.001

    ZHAO Y L, CHEN J F, LIU Z Y, et al. Short-term air traffic flow forecast based on K-nearest neighbor algorithm[J], Journal of Civil Aviation University of China, 2017, 35(5): 1-5+11. (in Chinese) doi: 10.3969/j.issn.1674-5590.2017.05.001
    [14] 闫少华, 崔海洋, 张兆宁. 一种基于支持向量机的飞行冲突探测方法[J]. 安全与环境学报, 2021, 21(3): 1211-1217. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202103042.htm

    YAN S H, CUI H Y, ZHANG Z N, A flight conflict detection method based on support vector machine[J]. Journal of Safety and Environment, 2021, 21(3): 1211-1217. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202103042.htm
    [15] 李桂毅, 胡明华. 考虑航段相关性的航路拥挤态势多模型融合动态预测方法[J]. 交通运输系统工程与信息, 2018, 18 (1): 215-222. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201801033.htm

    LI G Y, HU M H, Multi-model fusion dynamic prediction method of enroute congestion situation with considering the correlation of air route segment[J]. Journal of Transportation System Engineering and Information Technology, 2018, 18 (1): 215-222. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201801033.htm
    [16] PANG Y, XU N, LIU Y. Aircraft trajectory prediction using LSTM neural network with embedded convolutional layer[C]. The Annual Conference of the PHM Society. Scottsdale, AZ, USA: PHM Society, 2019.
    [17] GUAN G, ZHOU Z, WANG J, et al. Machine learning aided air traffic flow analysis based on aviation big data[J]. IEEE Transactions on Vehicular Technology, 2020, 69(5): 4817-4826. doi: 10.1109/TVT.2020.2981959
    [18] 尚然然. 基于数据挖掘的终端区短期流量预测技术研究[D]. 唐山: 华北理工大学, 2021.

    SHANG R R. Research on short-term traffic flow prediction technology in terminal area based on data mining[D]. Tangshan: North China University of Science and Technology, 2021. (in Chinese)
    [19] 徐一帆. 基于小波降噪技术的OPAX方法改进研究及应用[D]. 沈阳: 沈阳理工大学, 2020.

    XU Y F. Study and application of OPAX method based on wavelet denoising technology[D]. Shenyang: Shenyang Ligong University, 2020. (in Chinese)
    [20] 夏飞, 李明特. 联合BIC准则和多重注意力机制的空调能耗预测[J]. 低温与超导, 2022, 50(4): 81-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DWYC202204014.htm

    XIA F, LI M T, Air conditioning energy prediction using combined BIC criterion and multiple attention mechanism[J]. Cryogenics and Superconductivity, 2022, 50(4): 81-87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DWYC202204014.htm
    [21] 刘明, 王永瑜. Durbin-Watson自相关检验应用问题探讨[J]. 数量经济技术经济研究, 2014, 31(6): 153-160. https://www.cnki.com.cn/Article/CJFDTOTAL-SLJY201406011.htm

    LIU M, WANG Y Y. Exploring in Durbin-Watson autocorrelation test[J]. The Journal of Quantitative and Technical Economics, 2014, 31(6): 153-160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLJY201406011.htm
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  1012
  • HTML全文浏览量:  440
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-11
  • 网络出版日期:  2022-09-17

目录

    /

    返回文章
    返回