An Analysis of the Reliability of Radius Parameters of Circular Curves on Super-speed Highways
-
摘要: 为探究超高速公路路线设计确保车辆行车安全的圆曲线最小半径值,引入可靠度理论,以汽车在圆曲线路段行驶时不产生横向滑移为约束条件构建动力学模型,利用该模型对圆曲线半径进行分析,并提出圆曲线半径的可靠度功能函数。对功能函数中的车辆运行速度、路面横向摩擦系数、道路超高值等相关参数进行统计,并分析其分布规律。求解设计速度分别为100,120,140,160 km/h时超高速公路圆曲线的最小半径值,取整后用蒙特卡洛法仿真估计各设计速度对应最小半径的失效概率。结合公众心理承受度,以失效概率小于0.01%为基准,对各设计速度下的圆曲线半径进行可靠性设计,得到超高速公路圆曲线最小半径推荐值在潮湿的路面条件下分别为920,1 000,1 100,1 220 m;在积雪的路面条件下分别为1 380,1 400,1 420,1 450 m。实证结果表明:在事故率较高的路段,各段圆曲线半径对应的失效概率最小值为0.019 5%,大于最小圆曲线半径的失效概率值0.01%。采用0.01%的失效概率设计超高速公路圆曲线半径,可保证其安全性高于现有标准。Abstract: The design of super-speed highways should consider the minimum radius parameters of circular curves that ensures the safety of vehicles operating at a high speed. In this paper, a reliability theory is proposed, and a mechanical model is developed in order to study an appropriate radius of circular curves, which will ensure that the vehicles running over the curves will not create any lateral slip. Based on this principle, the radius of circular curves is analyzed, and a reliability function is proposed. In the proposed reliability function, a number of parameters are computed and analyzed, including the vehicle speed, friction coefficient of the transverse surface, superelevation, etc. Under the design speed of 100, 120, 140 and 160 km/h, the minimum radius of the circular curve is calculated and rounded. A Monte Carlo simulation method is used to calculate the failure probability of the minimum radius corresponding to each design speed. Combined with psychological tolerance of the public, a reliability design for the radius of circle curve at each design speed should ensure the failure probability is less than 0.01%. The recommended value of the minimum radius of circular curve at each design speed is 920, 1 000, 1 100 and 1 220 m under a condition of wet pavement; The minimum radius of circular curve is 1 380, 1 400, 1 420 and 1 450 m under a condition of snow-covered pavement. Study results show that in the sections with high accident rate, the minimum failure probability corresponding to the radius of circular curve for each segment is 0.019 5%. It is greater than the failure probability of 0.01% for the minimum radius of circular curve. The safety level of super-speed highway is higher than current standards when the radius of circular curve is designed with the failure probability of 0.01%.
-
表 1 高速公路分级
Table 1. Classification of highway
公路等级 设计速度/(km/h) 超高速公路 超一级高速 160/140/120/100 超二级高速 200/180/160/140 超三级高速 240/220/200/180 普通高速公路 120/100/80/60 表 2 车辆运行速度K-S检验结果表
Table 2. K-S test results of vehicle running speed
设计速度/ (km/h) 样本数 正态参数 最极端差别 K-SZ 渐进显著性 均值 标准差 120 83 115.096 11.696 0.031 0.739 0.761 100 78 96.332 8.570 0.030 0.502 0.678 80 75 79.445 10.466 0.041 0.811 0.593 表 3 不同状态路面在不同速度下的路面摩擦系数
Table 3. Friction coefficient of pavement under different conditions and different speeds
路面状况 速度(km/h) 摩擦系数均值 摩擦系数标准差 潮湿 80.4 0.419 0.091 潮湿 85 0.401 0.091 潮湿 90 0.383 0.091 潮湿 95 0.357 0.091 潮湿 99.8 0.350 0.091 干燥 任意速度 0.885 0.095 表 4 摩擦系数影响因子
Table 4. Influencing factors of friction coefficient
路面状况 影响因子 干燥、养护较好 1.0 干燥、磨光 0.9 潮湿、养护较好 0.7 潮湿、磨光 0.4 积雪 0.3 表 5 其他国家高速公路最大超高值
Table 5. Maximum superelevation of highway in other countries
国家 超高/% 不受冰雪影响 考虑冰雪影响 受冰雪影响较大 美国 10(12) 8 6 日本 10 8 6 德国 8 8 8 表 6 超一级高速公路最大超高值
Table 6. Maximum superelevation of super-speed highway class 1
设计速度/(km/h) 超高值/% 100 10 120 10 140 12 160 12 表 7 超一级高速公路的最大超高值
Table 7. Maximum superelevation of super-speed highway class 1
设计速度/(km/h) 超高值/% 不受冰雪影响 考虑冰雪影响 100 10 8 120 10 8 140 12 8 160 12 8 表 8 最大横向摩擦系数均值
Table 8. Mean value of maximum transverse friction coefficient
路面环境类型 路面养护较好 路面磨光 干燥 0.885 0.797 潮湿 0.225 0.140 积雪 0.105 0.105 表 9 最小半径值
Table 9. Theoretical minimum radius
公路等级 设计速度/(km/h) 路面状况 超高值/% 折算后的最大横向摩擦系数 最小半径/m 超一级高速公路 100 潮湿 10 0.14 328.084 积雪 8 0.10 437.445 120 潮湿 10 0.14 472.441 积雪 8 0.10 629.921 140 潮湿 12 0.14 593.580 积雪 8 0.10 857.393 160 潮湿 12 0.14 775.288 积雪 8 0.10 1 119.860 表 10 最小设计半径值及其可靠度结果
Table 10. Theoretical minimum design radius and reliability results
公路等级 设计速度/(km/h) 路面条件 最小设计半径/m 运行速度均值/ (km/h) 运行速度标准差/ (km/h) 可靠指标 失效概率/% 超一级高速公路 100 潮湿 350 88.03 12.32 2.820 0.24 积雪 450 92.05 12.89 2.400 0.82 120 潮湿 500 93.74 13.12 2.911 0.18 积雪 630 97.44 13.64 2.473 0.67 140 潮湿 600 96.65 13.53 3.036 0.12 积雪 860 102.42 14.34 2.536 0.56 160 潮湿 800 101.26 14.17 2.948 0.16 积雪 1 120 106.65 14.93 2.612 0.45 表 11 设计半径推荐最小安全值
Table 11. Recommended minimum safety value of radius
公路等级 设计速度/ (km/h) 路面 安全半径/m 可靠指标 失效概率/% 超一级高速公路 100 潮湿 920 3.719 0.01 积雪 1 380 3.719 0.01 120 潮湿 1 000 3.719 0.01 积雪 1 400 3.719 0.01 140 潮湿 1 100 3.719 0.01 积雪 1 420 3.719 0.01 160 潮湿 1 220 3.719 0.01 积雪 1 450 3.719 0.01 表 12 圆曲线路段事故率及失效概率
Table 12. Accident rate and failure probability of circular curve
起点 终点 设计速度/(km/h) 事故率/[次/(年• km)] 运行速度/(km/h) 半径/m 超高值/% 半径失效概率/% K169+240 K169+720 120 10.42 121.35 2 802 3 4.23x10-6 K169+720 K171+050 120 5.26 121.35 2 802 3 4.23x10-6 K171+050 K171+450 120 12.5 121.35 2 802 3 4.23x10-6 K173+500 K173+860 120 22.22 118.81 1 800 4 0.0195 K184+280 K184+550 120 22.22 118.81 1 800 4 0.0195 K192+208 K192+700 120 6.1 121.91 3 093 3 1.78x10-7 K192+700 K193+299 120 10.02 121.91 3 093 3 1.78x10-7 K193+299 K194+020 120 9.71 121.91 3 093 3 1.78x10-7 K194+020 K194+540 120 3.85 121.91 3 093 3 1.78x10-7 K195+716 K196+400 120 5.85 120.69 2 500 3 1.00x10-4 K196+400 K197+400 120 4 120.69 2 500 3 1.00x10-4 K197+400 K198+312 120 7.68 120.69 2 500 3 1.00x10-4 K198+981 K199+700 120 9.74 120.69 2 500 3 1.00x10-4 K199+700 K200+000 120 10 120.69 2 500 3 1.00x10-4 -
[1] 何永明, 裴玉龙. 超高速公路发展可行性论证与必要性研究[J]. 公路, 2016, 61(1): 158-162. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201601039.htmHE Y M, PEI Y L. Feasibility demonstration and necessity analysis on superhighway[J]. Highway, 2016, 61 (1) : 158-162. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201601039.htm [2] 孙川, 吴超仲, 褚端峰, 等. 基于车辆侧向稳定性分析的弯道行驶安全评价[J]. 交通信息与安全, 2014, 32(6): 95-100. doi: 10.3963/j.issn.1674-4861.2014.06.016SUN C, WU C Z, CHU D F, et al. Safety evaluation of driving on curves based on analysis of vehicle lateral stability[J]. Journal of Transport Information and Safety, 2014, 32(6): 95-100. (in Chinese) doi: 10.3963/j.issn.1674-4861.2014.06.016 [3] BRUBACHER J R, CHAN H, ERDELYI S, et al. Road safety impact of increased rural highway speed limits in British Columbia, Canada[J]. Sustainability, 2018, 10(10): 3555. doi: 10.3390/su10103555 [4] HE Y M, SONG Y T, PEI Y L, et al. Theoretical research on longitudinal profile design of superhighways[J]. Journal of Advanced Transportation, 2020(1): 1-14. [5] HE Y M, DING B Q. Environmental and economic evaluation of superhighway based on travel cost[J]. Ekoloji, 2019, 28(107): 4351-4359. [6] 何永明, 裴玉龙, 冉斌. 基于智能路钮的超高速公路虚拟轨道系统研究[J]. 交通运输系统工程与信息, 2020, 20(2): 55-60+75. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202002009.htmHE Y M, PEI Y L, RAN B. Superhighway virtual track system based on intelligent road button[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(2): 55-60+75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202002009.htm [7] PEI Y L, HE Y M. Horizontal alignment security design theory and application of superhighways[J]. Sustainability, 2020, 12(6): 2222. doi: 10.3390/su12062222 [8] NAVIN F P D. Safety factors for road design: Can they be estimated[J]. Transportation Research Record, 1990(1280): 181-189. [9] NAVIN F P D. Reliability indices for road geometric design[J]. Canadian Journal of Civil Engineering, 1992, 19(5): 760-766. doi: 10.1139/l92-087 [10] 薛晓姣, 杨宏志, 任楠. 应急条件下区域路网行程时间可靠性研究[J]. 交通信息与安全, 2019, 37(2): 25- 32. doi: 10.3963/j.issn.1674-4861.2019.02.004XUE X J, YANG H Z, REN N. Travel time reliability of regional road network under emergency conditions[J]. Journal of Transport Information and Safety, 2019, 37(2): 25-32. (in Chinese) doi: 10.3963/j.issn.1674-4861.2019.02.004 [11] 张航, 张肖磊, 吕能超. 高速公路小半径平曲线超高可靠性设计[J]. 武汉理工大学学报(交通科学与工程版), 2019, 43 (3): 452-456. doi: 10.3963/j.issn.2095-3844.2019.03.015ZHANG H, ZHANG X L, LYU N C. Reliability design of superelevation on expressway small radius horizontal curve[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2019, 43(3): 452-456. (in Chinese) doi: 10.3963/j.issn.2095-3844.2019.03.015 [12] 王路, 程建川. 基于可靠度的高速公路准临界坡长[J]. 东南大学学报(自然科学版), 2018, 48(1): 181-187. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201801028.htmWANG L, CHENG J C. Precritical grade length of expressway based on reliability[J]. Journal of Southeast University (Natural Science Edition), 2018, 48(1): 181-187. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201801028.htm [13] 严亚丹, 仝佩, 宁佐强, 等. 城市主干路交通功能可靠度量化评价方法[J]. 交通运输工程学报, 2018, 18(3): 157-166. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201803019.htmYAN Y D, TONG P, NING Z Q, et al. Quantitative evaluation method of traffic function reliability for urban arterial roads[J]. Journal of Traffic and Transportation Engineering, 2018, 18(3): 157-166. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201803019.htm [14] 何永明, 裴玉龙. 超高速公路行驶燃油消耗预测研究[J]. 昆明理工大学学报(自然科学版), 2020, 45(2): 151-160. https://www.cnki.com.cn/Article/CJFDTOTAL-KMLG202002020.htmHE Y M, PEI Y L. A research on fuel consumption prediction when vehicles run on superhighway[J]. Journal of Kunming University of Science and Technology(Natural Science), 2020, 45(2): 151-160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KMLG202002020.htm [15] 汪双杰, 方靖, 周荣贵, 等. 公路运行速度特征研究[J]. 中国公路学报, 2010, 23(增刊1): 24-27, 46. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL2010S1006.htmWANG S J, FANG J, ZHOU R G, et al. Research on operating speed characteristics of highway[J]. China Journal of Highway and Transport, 2010, 23(S1): 24-27, 46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL2010S1006.htm [16] 陈富坚, 郭忠印, 陈富强. 公路平曲线半径的可靠性设计[J]. 哈尔滨工业大学学报, 2012, 44(4): 100-104. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201204021.htmCHEN F J, GUO Z Y, CHEN F Q. Reliability design method for horizontal curve radius of highway alignment[J]. Journal of Harbin Institute of Technology, 2012, 44(4): 100-104. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201204021.htm [17] 周海超, 王国林, 姜震, 等. 湿滑状态下轮胎路面摩擦特性的数值分析方法[J]. 机械工程学报, 2020, 56(21): 177-185. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202021019.htmZHOU H C, WANG G L, JIANG Z, et al. Numerical analysis method for friction characteristics of tire-pavement under wet slip condition[J]. Journal of Mechanical Engineering, 2020, 56(21): 177-185. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202021019.htm [18] 游克思. 基于车辆动力学和可靠性理论的道路安全分析及优化设计研究[D]. 南京: 东南大学, 2012.YOU K S. Vehicle dynamic and reliability based highway safety analysis and design optimization[D]. Nanjing: Southeast University, 2012. (in Chinese) [19] 杨洋, 李莉莉. 国内外公路超高设计对比分析及其应用研究[J]. 中外公路, 2018, 38(3): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201803003.htmYANG Y, LI L L. Comparative analysis and application of highway superelevation design in China and other countries[J]. Journal of China & Foreign Highway, 2018, 38(3): 7-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201803003.htm [20] 方守恩, 陈雨人. 道路规划与几何设计[M]. 北京: 人民交通出版社, 2021.FANG S E, CHEN Y R. Road planning andgeometric design[M]. Beijing: China Communications Press, 2021. (in Chinese) [21] 李国强, 黄宏伟, 吴迅. 工程结构荷载与可靠度设计原理[M]. 北京: 中国建筑工业出版社, 2016.LI G Q, HUANG H W, WU X. Load and reliability design principle of engineering structure[M]. Beijing: China Architecture & Building Press, 2016. (in Chinese)