Forecasting Traffic Volume of Urban Logistics Drones in Low-altitude Airspace
-
摘要: 为探究城市物流的无人机配送需求及低空空域交通量,提出了1种考虑公众意愿程度的无人机配送包裹量预测方法。基于二元Logistic回归模型构建了无人机配送的公众使用意愿模型,综合考虑公众使用意愿和包裹标签(即包裹是否去往国内或国外、是否去往城市或农村、载具是否为无人机、是否低于特定重量等)估算了城市无人机配送的需求量。以广州、北京等5个城市为例进行了2025—2050年城市无人机配送需求量和低空空间交通量的预测实验。结果表明:经模型显著性验证,公众使用意愿的整体预测精度为81.7%。2025—2050年无人机配送的需求量均呈现上升态势;城市居民人口、经济发展、公众使用意愿等因素都将影响城市无人机配送的发展;考虑公众使用意愿因素能够提高无人机配送需求量预测的可靠性,预测结果可为城市低空交通空域规划提供指导。
-
关键词:
- 城市交通 /
- 无人机物流 /
- 低空空域交通量 /
- Logistic模型
Abstract: In order to estimate the demand of urban parcel delivery using unmanned air vehicles (UAVs) and the corresponding traffic volume in low-altitude airspace, a method is proposed for predicting traffic volume of UAVs delivering parcels based on the consideration of the public's intention and a binary Logistic model. The demand of instant delivery using UAVs will be estimated by considering the public's intention and parcel labels(i.e. whether the package goes to domestic or foreign, whether it goes to urban or rural areas, whether the carrier is a drone, whether it is below a specific weight, etc.). A case study of five cities, including Guangzhou and Beijing, is completed to forecast the parcel volume that can be delivered by UAVs and the corresponding traffic volume of UAVs in the low-altitude airspace from 2025 to 2050. The results show that the accuracy of the prediction accuracy of the public's intention on UAV distribution is 81.7% and the demand of urban parcel delivery using UAVs will be on the rise from 2025 to 2050. The population of urban residents, economic development, the public's intention and other factors will affect the development of UAV-based parcel distribution. Study results show that the reliability of forecasting the demand of UAV delivery can be improved by taking account into the public's intention on UAV distribution and such predictions can be used to support the low-altitude airspace planning, in order to accommodate the rise of parcel delivery using UAVs.-
Key words:
- urban traffic /
- drone logistics /
- low-altitude airspace traffic /
- logistic model
-
表 1 个人属性变量解释及赋值表
Table 1. Personal attribute variable interpretation and assignment table
变量类别 变量名称 变量代码 变量解释及赋值 取值范围 个人社会属性 年龄/岁 A 18及以下=1;9~34=2;5~49=3;0及以上=4 1~4 性别 G 男=1;女=2 1~2 职业 P 学生=1;企事业单位=2;自由职业者=3;其他=4 1~4 学历 E 本科以下=1;本科=2;硕士=3;博士=4 1~4 月收人/元 I 5 000以下=1; 000~10 000=2 10 000以上=3 1~3 个人认知属性 职业相关度 J 从事与无人机配送相关职业,采用五级李克量表 1~5 安全关注度 S 骑手配送过程中引发的安全问题,采用五级李克量表 1~5 新事物接受度 F 愿意接受或尝试新事物的程度,采用五级李克量表 1~5 表 2 感知因素变量解释及赋值表
Table 2. Perception factor variable interpretation and assignment table
变量类别 变量代码 测量变量名称 感知有用性 X1 无人机配送相较于现行配送更节约时间 X2 无人机配送相较于现行配送更节省费用 X3 无人机配送相较于现行配送更加环保 X4 无人机配送普及后可提供新的工作岗位 感知易用性 X5 您觉得您是都能很快学会无人机装取货操作 X6 您是否在意无人机无法实现上门取、送货 感知风险性 X7 您是否担心无人机在配送中发生故障进而延误时间或伤害行人、其他财务损失(如坠落) X8 您是否担心无人机在配送过程中发生错误(如送错地址、丢失包裹) X9 您是否担心无人机大量从事配送会侵犯您的隐私 感知可行性 X10 我认为无人机城市配送是可行的 X11 我认为无人机配送是未来的主流配送方式 表 3 样本人数基本特征描述性统计表
Table 3. Descriptive statistics table of basic characteristics of sample size
个人属性变量 总样本数 愿意使用人数 百分比/% 不愿意使用人数 百分比/% 年龄/岁 18及以下 16 10 62.50 6 37.50 19~34 413 270 65.38 143 34.62 35~49 98 58 59.18 40 40.82 50及以上 20 12 60.00 8 40.00 性别 男 257 162 63.04 95 36.96 女 290 188 64.83 102 35.17 职业 学生 186 123 66.13 63 33.87 企事业单位 266 165 62.03 101 37.97 自由职业者 49 33 67.35 16 32.65 其他 46 29 63.04 17 36.96 学历 本科以下 100 68 68.00 32 32.00 本科 278 170 61.15 108 38.85 硕士 146 97 66.44 49 33.56 博士 23 15 65.22 8 34.78 月收人/元 5 000以下 267 176 65.92 91 34.08 5 000-10 000 174 115 66.09 59 33.91 10 000以上 106 59 55.66 47 44.34 表 4 信度检验表
Table 4. Reliability checklist
Cronbach α 基于标准化项目的Cronbach α 项目个数 0.722 0.701 20 表 5 Hosmer-Lemeshow检验表
Table 5. Hosmer-Lemeshow checklist
步骤 卡方 df 显著性 1 17.525 8 0.025 15 8.920 8 0.349 表 6 二项Logistic模型回归分析结果
Table 6. Binomial Logistic model regression analysis results
变量名 B S.E. Wald df 显著性 Exp(B) 95% Exp(B)之信赖区间 下限 上限 X5 0.501 0.127 15.548 1 0.000 1.650 1.287 2.117 X1 0.385 0.143 7.261 1 0.007 1.470 1.111 1.946 X7 -0.348 0.139 6.234 1 0.013 0.706 0.537 0.928 X10 0.877 0.147 35.468 1 0.000 2.404 1.801 3.208 X11 0.754 0.152 24.731 1 0.000 2.124 1.579 2.859 常数 -6.985 0.821 72.409 1 0.000 0.001 表 7 预测结果表
Table 7. Forecast classification table
预测内容 预测正确数 预测错误数 预测准确率/% 不愿意使用无人机配送包裹 132 65 67.0 愿意使用无人机配送包裹 315 35 90.0 表 8 低、中、高增长率下无人机交付的包裹量预测表
Table 8. Forecast table of package volume delivered by drones under low, medium and high growth rates
单位: 亿件 年份 包裹量 低增长率 中增长率 高增长率 2025 234.04 283.40 341.16 2030 275.95 391.95 550.69 2035 325.38 542.06 888.92 2040 383.65 749.67 1 434.86 2045 452.37 1 036.80 2 316.12 2050 533.39 1 433.89 3 738.62 表 9 全国城市空域无人机每小时交通量预测表
Table 9. Hourly UAV traffic forecast table for national urban airspace
单位: 架·次 年份 空无人机数量 低增长率 中增长率 高增长率 2025 4 673 239 5 659 026 6 812 326 2030 5 510 238 7 826 432 10 996 276 2035 6 497 149 10 823 952 17 749 900 2040 7 660 819 14 969 523 28 651 422 2045 9 032 909 20 702 847 46 248 367 2050 10 650 747 28 632 033 74 652 893 -
[1] 观研天下信息咨询有限公司. 2019年中国无人机市场分析报告[EB/OL]. (2019-01)[2021-05-01]. https://wenku.baidu.com/view/fd829919001ca300a6c30c22590102020640f273.html.GuanyanTianxia Information Consultin, Co, Ltd. 2019 China UAVMarketAnalysisReport[EB/OL]. (2019-01)[2021-05-01]. https://wenku.baidu.com/view/fd829919001ca300a6c30c22590102020640f273.html. (in Chinese) [2] 杨骁勇, 张辉, 刘尚豫, 等. 航空安全领域研究进展可视化综述[J]. 交通信息与安全, 2021, 39(3): 8-16. doi: 10.3963/j.jssn.1674-4861.2021.03.002YANG X Y, ZHANG H, LIU S Y, etal. A visualizedreview of research progress in aviation safety[J]. Journal of Transport Information and Safety, 2021, 39(3): 8-16. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.03.002 [3] 田凤, 汤新民, 李博, 等. 无人机飞行计划管理系统研究[J]. 交通信息与安全, 2016, 34(4): 104-111. doi: 10.3963/j.issn1674-4861.2016.04.016TIAN F, TANG X M, LI B, et al. Research on UAV flight plan managementsystem[J]. Journal of Transport Information and Safety, 2016, 34(4): 104-111. (in Chinese) doi: 10.3963/j.issn1674-4861.2016.04.016 [4] MURRAY C C, CHU A G. The flying si-dekick traveling salesman problem: Optimization of drone-assisted parcel delivery[J]. Transportation Research Part C: Emerging Technologies, 2015(54): 86-109. http://smartsearch.nstl.gov.cn/paper_detail.html?id=e520615c7bd88d092caf8dcb8af24a45 [5] MURRAY C C, RAJ R. The multiple flying sidekicks traveling salesman problem: parceldelivery with multiple drones[J]. Transportation Research Part C: Emerging Technologies, 2020(110): 368-398. http://www.sciencedirect.com/science/article/pii/S0968090X19302505 [6] 刘琨, 封硕. 面向无人机航迹规划的改进人工蜂群算法[J]. 郑州大学学报(理学版), 2021, 53(1): 74-79+126. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZDZ202101012.htmLIU K, FENG S. Improved artificial bee colony algorithm for UAV path planning[J]. Journal of Zhengzhou University(Natural Science Edition), 2021, 53(1): 74-79+126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZZDZ202101012.htm [7] AGATZ N, BOUMAN P, SCHMIDT M. Optimization approaches for the traveling salesman problem with drone[J]. Transportation Science, 2018, 52(4): 965-981. doi: 10.1287/trsc.2017.0791 [8] PEREZ-MONTENRGRO C, SCANAVINO M, Bl-OISE N, et al. A mission coordinator approach for a fleet of UAVs in urban scenarios[J]. Transportation Research Procedia, 2018(35): 110-119. http://www.sciencedirect.com/science/article/pii/S2352146518303582 [9] LUO R, ZHENG H, GUO J. Solving the multifunctional heterogeneous UAV cooperative mission planning problem usingmultiswarm fruit fly optimization algorithm[J]. Sensors, 2020, 20(18): 5026. doi: 10.3390/s20185026 [10] 钱欣悦, 张洪海, 张芳, 等. 末端配送物流无人机起降点选址分配问题研究[J]. 武汉理工大学学报(交通科学与工程版), 2021, 45(4): 682-687+693. doi: 10.3963/j.issn.2095-3844.2021.04.013QIAN X Y, ZHANG H H, ZHANG F, et al. Research on location allocation of UAV landing points for terminal distribution logistics[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2021, 45(4): 682-687+693. (in Chinese) doi: 10.3963/j.issn.2095-3844.2021.04.013 [11] 王锡柱. 无人机空域准入: 法律分析与制度建构[J]. 行政法学研究, 2021, 29(2): 111-123 https://www.cnki.com.cn/Article/CJFDTOTAL-XZFX202102010.htmWANG X Z. Airspace access for UAV: legal analysis and system construction[J]. Administrative Law Review, 2021, 29 (2): 111-123. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XZFX202102010.htm [12] 36氪创投研究院. 无人机配送领域研究报告[EB/OL]. (2020-08)[2021-05-01]. http://www.199it.com/archives/1072522.html.36KE CHUANGTOU RESEARCH INSTITUTE. Researchreportinthefieldofdronedistribution[EB/OL]. (2020-08)[2021- 05-01]. http://www.199it.com/archives/1072522.html. (in Chinese) [13] 圆通研究院. 无人机现状与未来前景解析与快递物流业应用报告[EB/OL]. (2017-12)[2021-05-01]. https://www.sohu.com/a/211506568_649545.YUAN TONG RESEARCH INSTITUTE. UAV status and future prospect analysis and express logistics industry application r-eport[EB/OL]. (2017-12)[2021-05-01]. https://www.sohu.com/a/211506568_649545. (in Chinese) [14] 候亚伟, 冯辉宇, 韩孝强, 等. 基于Logistic回归模型的民用无人机市场预测研究[J]. 中国科技信息, 2017(23): 96-98. doi: 10.3969/j.issn.1001-8972.2017.23.032HOU Y W, FENG H Y, HAN X Q, et al. Research on Civil UAV market forecast based on logistic regression model[J]. China Science and Technology Information, 2017(23): 96-98. (in Chinese) doi: 10.3969/j.issn.1001-8972.2017.23.032 [15] MARC P N. Future demand and benefit-sforsmall unmanned aerial systems(UAS)package delivery[R]. USA: AIAA, 2017. [16] DOOLE M, ELLERBROEK J, HOEKSTRA J. Estimation of traffic density from drone-based delivery in very low level urbanairspace[J]. Journal of Air Transport Management, 2020(88): 101862. http://www.sciencedirect.com/science/article/pii/S0969699719304004 [17] VEMPATI L, CRAPANZANO R, WOODYARDC, et al. Linear program and simulation model for aerial package delivery: A case study of amazon prime air in phoenix, AZ[C]. 17th AIAA Aviation Technology, Denver: American Institute of Aeronautics and Astronautics, 2017. [18] 张芳, 张洪海, 钱欣悦, 等. 面向"最后一公里"的无人机需求预测[J]. 南京航空航天大学学报, 2021, 53(6): 855-862.ZHANG F, ZHANG H H, QIAN X Y, et al. Demand prediction fordrones based on "Last Mile" distribution[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2021, 53(6): 855-862. (in Chinese) [19] AURAMBOUT J P, GKOUMAS K, CIUFFO B. Last mile delivery by drones: An estimation of viable market potential and access to citizens across European cities[J]. European Transport Research Review, 2019, 11(1): 1-21. doi: 10.1186/s12544-018-0328-2 [20] MAYAKONDAM, JUSTIN CY, ANANDA, et al. A top-down methodology for global urban air mobility demand estimation[C]. AIAA AVIATION 2020 FORUM, American: AIAA, 2020. [21] 中华人民共和国国家邮政局. 2019年邮政行业发展统计公报[EB/OL]. (2020-05)[2021-05-01]. http://www.spb.gov.cn/xw/dtxx_15079/202005/t20200519_2154947.html.State Post Bureau of The People's Republic of China. 2019 statistical bulleti-n on the development of the postal industry[EB/OL]. (2020-05)[2021-05-01]. http://www.spb.gov.cn/xw/dtxx_15079/202005/t20200519_2154947.html. (in Chinese) [22] 国家统计局. 中华人民共和国2019国民经济和社会发展统计公报[EB/OL]. (2020-02)[2021-05-01]. http://www.stats.gov.cn/tjsj/zxfb/202002/t20200228_1728913.html.National Bureau of Statistics. Statistical communique of the people's republic of china on the 2019 national economic and social development[EB/OL]. (2020-02)[2021-05-01]. http://www.stats.gov.cn/tjsj/zxfb/202002/t20200228_1728913.html. [23] D'ANDREA R. Guest editorial can dronesdeliver?[J]. IEEE Transactions on Automation Science and Engineering, 2014, 11(3): 647-648. doi: 10.1109/TASE.2014.2326952 [24] 国家统计局. 中国统计年鉴-2019[EB/OL]. (2019-09)[2021- 05-01]. http://www--stats--gov--cn.proxy.www.stats.gov.cn/tjsj/ndsj/2019/indexch.htm.National Bureau of Statistics. Chinastatisticalyear book-2019 [EB/OL]. (2019-09)[2021-05-01]. http://www--stats--gov--cn.proxy.www.stats.gov.cn/tjsj/ndsj/2019/indexch.htm.