A Method for Evaluating Transfer Efficiency Between Bus and Subway Based on Data Envelopment Analysis
-
摘要: 高效的公交与地铁接驳,有助于提升公共交通出行一体化程度和轨道交通的辐射能力。为量化评价公交线路与轨道交通的接驳效率,综合考虑供给侧和需求侧,建立了初始评价指标。通过结构方程模型探究接驳效用评价指标间的相关关系,筛选出接驳效用核心评价指标,建立了涵盖公交线路设置条件、运营条件、接驳条件、客流规模和网络通达性5个方面的多模式公交接驳效用评价指标体系。鉴于公交接驳效用评价属于多输入、多产出系统,引入数据包络分析构建公交接驳效用定量化评价模型,并识别制约公交接驳效用的指标和因素。以北京市回龙观、天通苑以及上地这3个居民社区的公交与轨道接驳线路为例进行接驳效用评价分析。结果表明,本评价方法可量化公交线路在不同时段的接驳效用,与实际情况相符。对于接驳效用低的公交线路,可通过指标对比识别低效原因,并参照高效线路的投入产出指标优化线路,达到提升接驳效用的目的。Abstract: EEfficient transfer between bus and subway can enhance the integration of public transportation and the coverage of rail transit. To quantitatively evaluate the transfer efficiency between bus and subway, a set ofinitial evaluation indices are listed with a comprehensive consideration of the supply and demand side. The core indices are then selected by exploring the correlation between the evaluation indices through structural equation modeling and an evaluation index system for transfer efficiency of public transit in a multi-modal transportation network is established covering five aspects of transit routes: design, operation, connectivity, passenger flow, and network accessibility. Given the multi-input and multi-output feature of the evaluation system, data envelopment analysis is introduced to develop a quantitative evaluation model for quantifying the connectivity of public transit and to identify the indicators that hinder efficiency of transit transfer. The evaluation of connectionefficiency of public transit is carried out in three residential communities in Beijing, namely Huilongguan, Tiantongyuan, and Shangdi. Study results show that the efficiency of transit transfer can be quantified based on the proposed evaluation model at various time intervals, which is consistent with observed data. The bus routes with a lower connectivity can be improved by identifying related reasons and referring those routes with good indices
-
表 1 多模式公交接驳效用评价指标描述
Table 1. Description of efficiency evaluation index for multimodal bus connection
一级指标 二级指标 编号 指标描述 线路设置条件 公交线路长度 LSC1 公交线路长度,km 线路站点数量 LSC2 公交线路站点个数(双向) 非直线性系数 LSC3 公交线路首末站实际距离与直线距离的比值,处在1.15~1.4为记为1,否则记为0 线路运营条件 车队规模 LOC1 公交线路配备的车辆数,辆 额定载客量 LOC2 公交线路所有车辆的额定载客量之和 发车间隔 LOC3 统计时段,公交线路平均发车间隔,s 平均运送速度 LOC4 统计时段,公交线路平均运送速度,km/h 平均满载率 LOC5 统计时段,公交线路所有车辆的平均满载率,% 线路接驳条件 接驳轨道站点个数 LCC1 该公交线路沿线接驳轨道站点的站点数量 平均换乘距离 LCC2 公交线路接驳线路站点的平均换乘距离,m 平均换乘时间 LCC3 公交线路接驳线站的平均换乘时间,s 客流规模 小时客运量 PFS1 该条公交线路日均小时运送乘客数量,人·次 换乘比率 PFS2 公交线路换乘乘客数量与总客运量的比值 网络通达性 可达性 NA1 以线路为单位,线路接驳站点与非接驳站点之间出行量与出行时间比值的均值 连通性 NA2 以线路为单位,统计时段的平均换乘次数 表 2 公交线路投入、产出指标描述性统计
Table 2. Statistical description of the inputs and outputs indicators of bus routes
序号 类别 指标 时段 平均值 方差 最大值 最小值 1 投入指标 线路里程/km 全时段 16.24 8.27 35.10 2.60 2 站点数量/个 全时段 47.85 23.58 101 9 3 车队规模/辆 全时段 20.90 10.46 45 4 4 额定载客量/人 全时段 91.59 26.61 169 36 5 平均运送速度(/ km/h) 早高峰 17.44 2.28 24.61 14.23 晚高峰 15.44 2.30 21.61 2.30 平峰 18.70 2.56 25.76 2.56 6 接驳轨道站点数量/个 全时段 1.54 0.64 3 1 7 平均换乘时间/s 早高峰 597.46 234.66 1 000 205 晚高峰 671.59 236.72 1 092 237 平峰 550.32 233.60 949 101 8 平均换乘距离/m 全时段 110.65 369.00 980.92 10 9 产出指标 小时客运量(/ 人·次) 早高峰 1 296.76 5 386.61 2 558 28 晚高峰 1 836.20 5 277.20 2 084 63 平峰 790.80 4 142.29 1 092 12 10 换乘比率/°% 早高峰 0.27 0.17 0.75 0.07 晚高峰 0.09 0.07 0.33 0.02 平峰 0.19 0.14 0.67 0.06 11 可达性 早高峰 131.18 165.65 398.50 21.05 晚高峰 239.80 101.89 219.00 15.54 平峰 750.20 126.19 894.37 21.38 12 连通性/次 早高峰 2.02 0.35 3.45 1.23 晚高峰 2.05 0.15 3.25 0.35 平峰 1.94 0.33 3.45 0.33 表 3 618路及其参照基准线路的投入和产出指标
Table 3. Inputs and outputs indicators of Route 618 and its benchmarks
决策单元 输入指标 输出指标 x1 x2 x3 x4 x5 x6 x7 x8 y1 y2 y3 y4 618路 28.69 81 32 94 17.08 2 742 232 1 143 0.10 5 1.59 966路 30.20 100 45 87 14.56 1 214 309 2 659 0.27 9 2.05 446路 14.50 38 24 100 16.93 1 704 78 2 648 0.07 60 1.91 专12 6.40 12 4 37 17.71 1 261 20 2 494 0.25 399 1.92 320路 25.50 68 38 107 14.45 2 669 40 1 467 0.14 10 3.45 -
[1] 胡晓婧, 向进. 轨道交通与常规公交换乘效率评价——以武汉市为例[J]. 道路交通与安全, 2016, 16(5): 35-41. https://www.cnki.com.cn/Article/CJFDTOTAL-DLJA201605008.htmHU X J, XIANG J. Evaluation of rail-bus transfer efficiency: A case study of Wuhan[J]. Journal of Transportation Engineering, 2016, 16(5): 35-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLJA201605008.htm [2] 聂婷婷, 郑维清, 孙杨, 等. 综合客运枢纽旅客换乘服务水平评价方法[J]. 交通运输研究, 2019, 5(6): 43-49. https://www.cnki.com.cn/Article/CJFDTOTAL-JTBH201906007.htmNIE T T, ZHENG W Q, SUN Y, et al. Evaluation method for passenger transfer service level of integrated passenger transport hub[J]. Transportation Research, 2019, 5(6): 43-49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTBH201906007.htm [3] WU X T, DONG H R, TSE C K, et al. Analysis of metro network performance from a complex network perspective[J]. Physica A: Statistical Mechanics and its Applications, 2018 (492): 553-563. [4] SUN L S, HAO S Y, QIAO J, et al. Analysis of public transit transfer influence factors based on mobile terminal[J]. Procedia Engineering, 2016(137): 496-505. [5] 安久煜, 宋瑞, 毕明凯, 等. 高铁车站接驳公交灵活线路优化设计研究[J]. 交通运输系统工程与信息, 2019, 19(5): 150-155+176. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201905021.htmAN J Y, SONG R, BI M K, et al. Optimization flexible route design for high-speed railway station feeder bus[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(5): 150-155+176. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201905021.htm [6] 王正武, 易童翔, 高志波. 响应型接驳公交运行路径与车辆调度的协调优化[J]. 交通科学与工程, 2018, 34(1): 68-73. https://www.cnki.com.cn/Article/CJFDTOTAL-CSJX201801012.htmWANG Z W, YI T X, GAO Z B. Coordinated optimization of running route and vehicle scheduling for responsive feeder transit[J]. Journal of Transport Science and Engineering, 2018, 34(1): 68-73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSJX201801012.htm [7] GUIHAIRE V, HAO J K. Improving timetable quality in scheduled transit networks[J]. Lecture Notes in Computer Science, 2010(6096): 21-30. [8] CHIEN S, SCHONFELD P. Joint optimization of a rail transit line and its feeder bus system[J]. Journal of Advanced Transportation, 2010, 32(3): 253-284. [9] 郑玉靖, 古玮, 暨育雄, 等. 效率与公平视角下的应急公交接驳调度优化[J]. 交通运输系统工程与信息, 2019, 19(2): 94-101. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201902014.htmZHENG Y J, GU W, JI Y X, et al. Optimizing a bus bridging strategy considering efficiency and equity[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(2): 94-101. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201902014.htm [10] HOLMGREN J. The effects of using different output measures in efficiency analysis of public transport operations[J]. Research in Transportation Business & Management, 2018 (28): 12-22. [11] AYADI A, HAMMAMI S. An analysis of the performance of public bus transport in Tunisian cities[J]. Transportation Research Part A: Policy and Practice, 2015(75): 51-60. [12] ADLER N, GOLANY B. Evaluation of deregulated airline networks using data envelopment analysis combined with principal component analysis with an application to Western Europe[J]. European Journal of Operational Research, 2001, 132(2): 260-273. doi: 10.1016/S0377-2217(00)00150-8 [13] 彭金栓, 张磊, 徐磊, 等. 基于数据包络法的轨道停车换乘效率评价[J]. 重庆交通大学学报(自然科学版), 2019, 38 (1): 97-101+112. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201901015.htmPENG J S, ZHANG L, XU L, et al. Evaluation of rail park and ride efficiency based on data envelopment method[J]. Journal of Chongqing Jiaotong University (Natural Science), 2019, 38(1): 97-101+112. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201901015.htm [14] HADAS Y, RANJITKAR P. Modeling public-transit connectivity with spatial quality-of-transfer measurements[J]. Journal of Transport Geography, 2012(22): 137-147. [15] 宗芳, 于萍, 吴挺, 等. 常规公交风险的SEM与Bayesian Network组合评估方法研究[J]. 交通信息与安全, 2018, 36(4): 22-28. doi: 10.3963/j.issn.1674-4861.2018.04.004ZONG F, YU P, WU T, et al. Study on the combination evaluation method of SEM and Bayesian network for conventional bus risk[J]. Journal of Transport Information and Safety, 2018, 36(4): 22-28. (in Chinese) doi: 10.3963/j.issn.1674-4861.2018.04.004 [16] CHARNES A, COOPER W W, RHODES E. Measuring the efficiency of decision making units[J]. European Journal of Operational Research, 1978, 2(6): 429-444. doi: 10.1016/0377-2217(78)90138-8 [17] 郑琰, 许美贤. 基于DEA模型的港口物流效率评价研究[J]. 重庆理工大学学报(自然科学), 2020, 34(10): 266-272. https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL202010037.htmZHENG Y, XU M X. Study on the evaluation of port logistics based on DEA model[J]. Journal of Chongqing University of Technology (Natural Science), 2020, 34 (10): 266-272. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL202010037.htm [18] 句庆玲, 龙科军. 面向地铁接驳需求的公交服务能力评估[J]. 公路与汽运, 2020(4): 17-20+26. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNQY202004008.htmGOU Q L, LONG K J. Evaluation of public transport service capability for Metro connection demand[J]. Highway and Motor Transport, 2020(4): 17-20 + 26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNQY202004008.htm [19] 刘明林, 段俊锴. 基于数据包络模型的公共交通运输效率评价[J]. 内蒙古公路与运输, 2018(3): 50-52. https://www.cnki.com.cn/Article/CJFDTOTAL-NMGY201803013.htmLIU M L, DUAN J K. Evaluation of public transport efficiency based on data envelopment model[J]. Highways & Transportation in Inner Mongolia, 2018(3): 50-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NMGY201803013.htm