留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于描述符辅助光流跟踪匹配的数据关联方法

夏华佳 章红平 陈德忠 李团

夏华佳, 章红平, 陈德忠, 李团. 基于描述符辅助光流跟踪匹配的数据关联方法[J]. 交通信息与安全, 2021, 39(6): 153-161. doi: 10.3963/j.jssn.1674-4861.2021.06.018
引用本文: 夏华佳, 章红平, 陈德忠, 李团. 基于描述符辅助光流跟踪匹配的数据关联方法[J]. 交通信息与安全, 2021, 39(6): 153-161. doi: 10.3963/j.jssn.1674-4861.2021.06.018
XIA Huajia, ZHANG Hongping, CHEN Dezhong, LI Tuan. A Data Association Method Based on Tracking and Matching of Assisted Optical Flows from the Descriptor[J]. Journal of Transport Information and Safety, 2021, 39(6): 153-161. doi: 10.3963/j.jssn.1674-4861.2021.06.018
Citation: XIA Huajia, ZHANG Hongping, CHEN Dezhong, LI Tuan. A Data Association Method Based on Tracking and Matching of Assisted Optical Flows from the Descriptor[J]. Journal of Transport Information and Safety, 2021, 39(6): 153-161. doi: 10.3963/j.jssn.1674-4861.2021.06.018

基于描述符辅助光流跟踪匹配的数据关联方法

doi: 10.3963/j.jssn.1674-4861.2021.06.018
基金项目: 

国家重点研发计划项目 SQ2018YFE020091

长江勘测规划设计研究院开放创新基金项目 CX2020K04

详细信息
    作者简介:

    夏华佳(1996—), 硕士研究生. 研究方向: 视觉/INS组合导航. E-mail: 67010973@qq.com

    通讯作者:

    章红平(1977—), 博士, 教授. 研究方向: GNSS/INS组合导航. E-mail: hpzhang@whu.edu.cn

  • 中图分类号: V249.32+8

A Data Association Method Based on Tracking and Matching of Assisted Optical Flows from the Descriptor

  • 摘要: 针对采用多状态约束卡尔曼滤波(MSCKF)的视觉惯性里程计定位精度易受特征点匹配异常值影响问题, 提出了1种基于描述符辅助光流跟踪匹配的数据关联方法。该方法采用金字塔LK光流对序列图像中特征点进行跟踪匹配, 计算每一对匹配点的rBRIEF描述符, 根据Hamming距离对描述符的相似度进行判断消除异常匹配点。在实验中从特征点匹配主观效果以及定位精度2个方面评估本文方法的有效性, 结果表明: 所提出方法能够有效滤除动态场景下图像特征匹配的异常值, 使用该方法处理后的图像进行MSCKF运动解算, 位置结果漂移率小于0.38%, 相较于未剔除异常匹配值的MSCKF算法结果, 改善了54.7%, 单帧图像处理时间约为39 ms。

     

  • 图  1  基于特征点的数据关联方案

    Figure  1.  Data association scheme based on feature points

    图  2  FAST角点检测模板

    Figure  2.  FAST corner detection template

    图  3  rBRIEF描述符旋转不变性

    Figure  3.  Rotation invariance of rBRIEF descriptor

    图  4  MSCKF视觉惯性里程计算法框图

    Figure  4.  MSCKF-based visual-inertial odometer algorithm

    图  5  特征点跟踪匹配点对数量图

    Figure  5.  Quantity of feature points tracking matching-point pairs

    图  6  载体导航状态

    Figure  6.  Navigation status of the carrier

    图  7  rBRIEF描述符滤除异常匹配前后对比

    Figure  7.  Comparison before and after rBRIEF descriptor filtering exception matching

    图  8  真值与不同算法解算轨迹图

    Figure  8.  Solving trajectory of the true value and different algorithms

    图  9  2种算法解算定位结果误差曲线图

    Figure  9.  Two algorithms solving the error curves of positioning results

    表  1  惯导设备参数

    Table  1.   Equipment parameters of inertial-navigation

    指标 M40 POS320
    陀螺零偏稳定性(℃/h) 50 0.3
    角度随机游走(℃/$ \sqrt h $) 0.4 0.03
    加表零偏稳定性(mGal) 200 200
    速度随机游走/(m/(s/$ \sqrt h $)) 0.1 0.05
    下载: 导出CSV

    表  2  Basler acA1600-20gm相机参数

    Table  2.   Parameters of Basler acA1600-20gm camera

    传感器类型 CCD
    传感器尺寸/mm 7.16×5.44
    分辨率/pixie 1628×1236
    像元大小/μm 4.4×4.4
    接口 千兆网
    曝光控制 相机API编程控制
    外部脉冲信号触发
    帧率/(帧/s) 20
    通道数/(颜色) 单通道/(黑白)
    像素位深度/bits 12
    下载: 导出CSV

    表  3  VIO1.0解算误差统计表

    Table  3.   Statistics of VIO1.0 solution errors

    N/m E/m D/m ROLL/(°) PITCH/(°) YAW/(°)
    MAX 7.74 16.80 2.63 0.18 0.17 1.46
    RMS 3.13 7.48 1.02 0.05 0.08 0.82
    下载: 导出CSV

    表  4  VIO2.0解算误差统计表

    Table  4.   Statistics of VIO2.0 solution errors

    N/m E/m D/m ROLL/(°) PITCH/(°) YAW/(°)
    MAX 5.51 7.17 2.43 0.14 0.13 1.05
    RMS 2.07 3.26 1.03 0.03 0.05 0.45
    下载: 导出CSV
  • [1] 姚卓, 章红平. 里程计辅助车载GNSS/INS组合导航性能分析[J]. 大地测量与地球动力学, 2018, 38(2): 206-210. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201802024.htm

    YAO Zhuo, ZHANG Hongping. Performance analysis of odometer assisted vehicle GNSS/INS integrated navigation[J]. Journal of Geodesy and Geodynamics, 2018, 38(2): 206-210. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201802024.htm
    [2] QIU Xiaochen, ZHANG Hai, FU Wenxing, et al. Monocular visual-inertial odometry with an unbiased linear system model and robust feature tracking front-end[J]. Sensors, 2019, 19(8): 1941. doi: 10.3390/s19081941
    [3] DELMERICO J, SCARAMUZZA D. A benchmark comparison of monocular visual-inertial odometry algorithms for flying robots[C]. 2018 International IEEE Conference on Robotics and Automation, Queensland, Australia: IEEE, 2018.
    [4] FAESSLER M, FONTANA F, FORSTER C, et al. Autonomous, vision-based flight and live dense 3D mapping with a quadrotor micro aerial vehicle[J]. Journal of Field Robotics, 2016, 33(4): 431-450. doi: 10.1002/rob.21581
    [5] BLOESCH M, BURRI M, OMARI S, et al. Iterated extended Kalman filter based visual-inertial odometry using direct photometric feedback[J]. The International Journal of Robotics Research, 2017, 36(10): 1053-1072. doi: 10.1177/0278364917728574
    [6] MOURIKIS A I, ROUMELIOTIS S I. A multi-state constraint Kalman filter for vision-aided inertial navigation[C]. 2007 International IEEE Conference on Robotics and Automation, Roma, Italy: IEEE, 2007.
    [7] 齐乃新, 杨小冈, 李小峰, 等. 基于ORB特征和LK光流的视觉里程计算法[J]. 仪器仪表学报, 2018, 39(12): 216-227. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201812025.htm

    QI Naixin, YANG Xiaogang, LI Xiaofeng, et al. Visual odometry algorithm based on ORB features and LK optical flow[J]. Chinese Journal of Scientific Instrument, 2018, 39(12): 216-227. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201812025.htm
    [8] LIU Jingneng, ZENG Guihua. Improved global context descriptor for describing interest regions[J]. Journal of Shanghai Jiaotong University(Science), 2012, 17(2): 147-152. doi: 10.1007/s12204-012-1244-6
    [9] 成怡, 朱伟康, 徐国伟. 基于余弦相似度的改进ORB匹配算法[J]. 天津工业大学学报, 2021, 40(1): 60-66. https://www.cnki.com.cn/Article/CJFDTOTAL-TJFZ202101011.htm

    CHENG Yi, ZHU Weikang, XU Guowei. An improved ORB matching algorithm based on cosine similarity[J]. Journal of Tianjin Polytechnic University, 2021, 40(1): 60-66. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJFZ202101011.htm
    [10] 邹斌, 赵小虎, 尹智帅. 基于改进ORB的图像特征匹配算法研究[J]. 激光与光电子学进展, 2021, 58(2): 96-103. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202102009.htm

    ZOU Bin, ZHAO Xiaohu, YIN Zhishuai. Image feature matching algorithm based on improved ORB[J]. Laser & Optoelectronics Progress, 2021, 58(2): 96-103. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202102009.htm
    [11] 王亭亭, 蔡志浩, 王英勋. 无人机室内视觉/惯导组合导航方法[J]. 北京航空航天大学学报, 2018, 44(1): 176-186. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201801021.htm

    WANG Tingting, CAI Zhihao, WANG Yingxun. UAV indoor vision/inertial navigation integrated navigation method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 176-186. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201801021.htm
    [12] 刘奕杉. 一种基于改进光流法的视觉惯性状态估计器[J]. 科学技术创新, 2021(10): 17-18. https://www.cnki.com.cn/Article/CJFDTOTAL-HLKX202110008.htm

    LIU Yishan. A visual inertial state estimator based on improved optical flow method[J]. Scientific and Technological Innovation, 2021(10): 17-18. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HLKX202110008.htm
    [13] BOUGUET J Y. Pyramidal implementation of the affine lucas kanade feature tracker description of the algorithm[J]. Intel Corporation, 2001, 4(5): 1-10.
    [14] RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: An efficient alternative to SIFT or SURF[C]. 2011 International Conference on Computer Vision, Barcelona, Spain: IEEE, 2011.
    [15] CHUM O, MATAS J, KITTLER J. Locally optimized RANSAC[C]. Joint Pattern Recognition Symposium, Magdeburg, Germany: DAGM, 2003.
    [16] 李团. 单频多模GNSS/INS/视觉紧组合高精度位姿估计方法研究[D]. 武汉: 武汉大学, 2019.

    LI Tuan. Research on the tightly coupled single-frequency multi-GNSS/INS/Vision integration for precise position and orientation estimation[D]. Wuhan: Wuhan University, 2019. (in Chinese).
    [17] MUR-ARTAL R, TARDÓS J D. Orb-slam2: An open-source slam system for monocular, stereo, andrgb-d cameras[J]. IEEE Transactions on Robotics, 2017, 33(5): 1255-1262. http://ieeexplore.ieee.org/document/7946260
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  903
  • HTML全文浏览量:  411
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-06
  • 网络出版日期:  2022-01-12

目录

    /

    返回文章
    返回