A Plan for Passenger Train Operation Based on the Dynamic Allocation of Seat Types
-
摘要: 为提高铁路部门服务质量和铁路旅客出行体验, 并制定可满足旅客需求多元化的旅客列车开行方案, 考虑坐席动态分配对旅客列车开行方案进行研究。从旅客和铁路运营部门2个角度出发, 分别以旅客动态乘车广义时间最短和铁路收益最大为目标, 以客流守恒、区间通过能力和满足客流需求等为约束建立多目标规划模型。通过Logit模型确定硬座、硬卧、软卧这3类坐席的分担率, 确定列车定员数, 并在求解过程中依据生成的开行方案不断更新3类坐席的分担率以实现3类坐席的动态分配, 直至结果趋于稳定。结合算例采用带精英策略的非支配排序遗传算法(NSGA-Ⅱ)求解, 并进行算例分析, 计算结果表明: 建立考虑坐席类型动态分配的旅客列车开行方案, 在实现旅客对坐席选择的同时, 铁路旅客服务率提高了3.5%, 铁路部门收益增大了1.5%。Abstract: Dynamic seat allocation is considered to formulate a plan for passenger train operation meeting the diversified needs of passengers,thus improving the service quality in the railway departments and the travel experience ofrailway passengers.From passengers and railway operation departments,this paper takes the minimum generalizedtravel time of passenger dynamics and the maximum railway revenue as the objectives and the conservation laws of passenger flow,interval through ability,and passenger flow volume demand as the constraint conditions. Besides,themulti-objective planning model is established. A Logit model is used to obtain the fixed number of passengers and theshare rates in the hard seat , hard berth, and soft berth. In the solving process , the share rates in various seats are constantly updated by the generated operation plan to realize the dynamic allocation of the three categories of seats untilthe results are obtained.'The example is solved using the non-dominated sorting genetic algorithm with elite strategy(NSGA-II) , and then the analysis of the example is carried out. The results show that the establishment of the plan forpassenger train operation considering the dynamic allocation of seat types has increased the passenger-railway servicerate by 3.5% and the railway's revenue by 1.5%,realizing the passenger's choice of seats.
-
表 1 各区段距离
Table 1. Distance of each section
区段 e1 e2 e3 e4 e5 e6 e7 区间距离/km 125 183 92 214 153 168 130 运行时长/min 一类车 75 105 58 122 91 99 78 二类车 100 141 75 157 121 133 105 表 2 模型其他参数
Table 2. Other parameters of the model
参数 分类 数值 车站个数 8 票价率 一型车 0.16 二型车 0.14 车公里消耗/[元/(车•km)][18] 一型车 0.065 二型车 0.06 表 3 单向OD客流
Table 3. One-way OD passenger flow
人 发 到 S1 S2 S3 S4 S5 S6 S7 S8 S0 0 3 502 3 328 2 010 4 321 3 920 3 826 5 215 S1 0 1 504 2 085 2 906 3 123 2 008 4 031 S2 0 1 102 3 201 3 229 3 112 4 210 S3 0 3 492 2 390 3 305 3 838 S4 0 2 312 3 839 4 520 S5 0 2 059 3 327 S6 0 2 005 S7 0 表 4 3类列车各因素权重比
Table 4. Weighting ratio of each factor for the three types of trains
列车类型 θ1 θ2 θ3 θ4 短程列车 0.436 0.256 0.190 0.118 中程列车 0.310 0.306 0.232 0.151 长程列车 0.275 0.452 0.091 0.182 表 5 满意度b
Table 5. Satisfaction factor b
首选坐席 次选坐席 硬座 硬卧 软卧 硬座 2.79 2.12 硬卧 2.45 2.73 软卧 2.15 3.18 表 6 惩罚因子ε
Table 6. Penalty factor ε
首选 次选 硬座 硬卧 软卧 硬座 0.55 0.72 硬卧 0.64 0.57 软卧 0.71 0.46 表 7 3类列车不同坐席广义出行成本
Table 7. Generalized travel costs of three types of trains with different seats
列车类型 U1(硬座) U2(硬卧) U3(软卧) 短程列车 0.436 0.256 0.190 中程列车 0.310 0.306 0.232 长程列车 0.275 0.452 0.091 表 8 3类列车不同坐席分担率
Table 8. Three types of trains with the share rates of different seats
列车类型 P1(硬座) P2(硬卧) P3(软卧) 短程列车 0.46 0.32 0.22 中程列车 0.35 0.3 0, 35 长程列车 0.27 0.35 0.38 表 9 3类列车车厢分配数
Table 9. Allocation of three types of train carriages
列车类型 硬座 硬卧 软卧 短程列车 8 6 2 中程列车 7 5 4 长程列车 6 6 4 表 10 旅客列车停站方案及开行频次
Table 10. Passenger train stopping plan and frequency of operation
编号 停站方案 一型车列数 二型车列数 1 1-2-3-4-5-6-7-8 3 7 2 1-2-3-4-5-6 0 2 3 1-2-3-4-6-7-8 0 3 4 1-2-3-4-6-8 3 2 5 1-2-3-5-6-7-8 2 3 6 1-2-3-6-7-8 1 0 7 1-2-4-5-7-8 2 2 8 1-2-5-6-7-8 0 3 9 1-2-5-7-8 2 3 10 1-3-4-7 0 3 11 1-3-5-7 0 2 12 1-4-6-7-8 3 0 13 2-3-4-5-6-8 0 3 14 2-3-8 2 2 15 2-5-6-7-8 1 0 16 3-4-5-7-8 1 0 17 3-4-6-7-8 1 2 18 3-4-6-8 1 0 19 4-5-8 3 0 总计 25 37 -
[1] XIE Zhixue, ZHU Wanshan, ZHENG Li. A dynamic railway seat allocation problem[J]. IIE Annual Conference Proceedings, 2013 (135) : 3480-3489. [2] YAN Zhenying, LI Xiaojuan, ZHANG Qi. Seat allocation model for high-speed railway passenger transportation based on flexible txain composition[J]. Computers & Industrial Engineering. 2020(142): 1-12. doi: 10.1016/j.cie.2020.106383 [3] ZHANG Xiaoqiang, LI Lin, AFZAL Muhammad. An optimal operation planning model for high-speed rail transportation[J]. International Journal of Civil Engineering, 2019, 17(9) : 1397-1407. doi: 10.1007/s40999-019-00401-w [4] YU Xueqiao, LANG Maoxiang, GAO Yang. An empirical study on the design of China high-speed rail express train operation plan-from a sustainable transport perspective[J]. Sustainability. 2018, 7(10): 1-19. [5] QI Jianguo, LI Shukai, GAO Yuan. Joint optimization model for train scheduling and train stop planning with passengers distribution on railway corridors[J]. Journal of the Operational Research Society. 2017, 69(1) : 1-16. doi: 10.1057/s41274-017-0248-x [6] 骆泳吉. 铁路席位控制建模与优化方法研究[D]. 北京: 北京交通大学, 2017,LUO Yongji. Modeling and optimization of seat inventory control for passenger railway[D], Beijing: Beijing Jiaotong University, 2017. (in Chinese) [7] 陶若冰, 金珈辉, 谭金练, 等. 可变编组动车组短期不同席别客流预测研究[J]. 铁道运输与经济, 2019, 41 (3): 37-42. https://www.cnki.com.cn/Article/CJFDTOTAL-TDYS201903007.htmTAO Ruobing, JIN Jiahui, TAN Jinlian, et al. A research on short-term forecasting of variable-combination EMU at different seating classes[J]. Railway Transport and Economy, 2019, 41(3) : 37-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDYS201903007.htm [8] 包云. 铁路列车席位控制理论和方法研究[D]. 北京: 北京交通大学, 2014.BAO Yun. The theory and methods for railway seat inventory control[D]. Beijing: Beijing Jiaotong University, 2014. (in Chinese) [9] 刘华森, 程文明, 张铭奎. 基于改进遗传算法的旅客列车席位分配组合优化[J]. 中国铁道科学, 2016, 37 (6): 113-120. doi: 10.3969/j.issn.1001-4632.2016.06.15LIU Huasen, CHENG Wenming, ZHANG Mingkui. Combination optimization for seat allocation of railway passenger car based on improved genetic improved genetic[J]. Journal of Railway Science and Engineering, 2016, 37(6) : 113-120. (in Chinese) doi: 10.3969/j.issn.1001-4632.2016.06.15 [10] 唐洁, 杨信丰, 申恒宇. 高速铁路跨线旅客列车开行方案优化研究[J]. 铁道科学与工程学报, 2019, 16 (3): 596-604. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201903006.htmTANG Jie, YANG Xinfeng, SHEN Hengyu. Optimization study on high-speed railway cross-line passenger train plan[J], Journal of Railway Engineering Society, 2019, 16 (3): 596-604. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201903006.htm [11] 吕叶. 基于动态客流的高速铁路列车开行方案调整优化方法研究[D]. 成都: 西南交通大学, 2015,LYU Ye. Adjustment and optimization of high-speed railway's train operation plan based on dynamic passenger flow[D]. Chengdu: Southwest Jiaotong University, 2015. (in Chinese) [12] 王培恒, 沈嘉犧. 基于城际铁路客流动态分配的列车开行方案优化生成[J]. 交通运输工程与信息学报, 2016, 14(1): 81-86. doi: 10.3969/j.issn.1672-4747.2016.01.014WANG Peiheng, SHEN Jiaxi. Optimal txain operating scheme based on intercity railway passenger flow dynamic assignment[J], Journal of Transportation Engineering and Information, 2016, 14(1): 81-86. (in Chinese) doi: 10.3969/j.issn.1672-4747.2016.01.014 [13] 彭宏勤, 朱郁俊. 基于客流动态分配的城际列车开行方案[J]. 交通运输系统工程与信息, 2013, 13⑴: 111-117. doi: 10.3969/j.issn.1009-6744.2013.01.017PENG Hongqin, ZHU Yujun. Intercity train operation schemes based on passenger flow dynamic assignment[J]. Journal of Transportation Systems Engineering and Information Technology, 2013, 13(1) : 111-117. (in Chinese) doi: 10.3969/j.issn.1009-6744.2013.01.017 [14] 陶思宇, 李美彦. 基于客流动态反馈控制的客运专线旅客列车开行方案调整方法[J]. 铁道运输与经济, 2012, 34(10): 20-25. doi: 10.3969/j.issn.1003-1421.2012.10.006TAO Siyu, LI Meiyan. Adjustment method of passenger train working diagram on DPL based on passenger flow dynamic feedback Control[J]. Railway Transport and Economy, 2012, 34(10): 20-25. (in Chinese) doi: 10.3969/j.issn.1003-1421.2012.10.006 [15] 史峰, 邓连波, 霍亮. 铁路旅客乘车行为的层次分析[J]. 铁道科学与工程学报, 2007, 4 (3) : 79-82. doi: 10.3969/j.issn.1672-7029.2007.03.016SHI Feng, DENG Lianbo, HUO Liang. The analytic hierarchy model in train choice of the railway passengers[J]. Journal of Railway Science and Engineering, 2007, 4 (3) : 79-82. doi: 10.3969/j.issn.1672-7029.2007.03.016 [16] 孙启鹏, 朱磊, 陈波. 基于动态广义费用的客运通道交通方式选择Logit模型[J]. 交通运输系统工程与信息, 2013, 13 (4) : 15-22. (in Chinese) doi: 10.3969/j.issn.1009-6744.2013.04.003SUN Qipeng, ZHU Lei, CHEN Bo, A dynamic generalized cost based logit model for passenger corridors[J]. Journal of Transportation Systems Engineering and Information Technology, 2013, 13(4) : 15-22. (in Chinese) doi: 10.3969/j.issn.1009-6744.2013.04.003 [17] WANG Yu, LI Changsheng, JIN Xin. Multi-objective optimization of rolling schedule for tandem cold strip rolling based on NSGA-Ⅱ[J]. Journal of Manufacturing Processes, 2020, 60 (10): 257-267. http://www.sciencedirect.com/science/article/pii/S1526612520307416 [18] 郁嬛君. 铁路电力机车牵引运营成本研究[D], 成都: 西南交通大学, 2014YU Huanjun. Research on operation cost of railway electric locomotive traction[D]. Chengdu : Southwest Jiaotong University, 2014. (in Chinese) [19] 郑辉. 城际铁路客流预测的Logit模型D]. 铁道运输与经济, 2011, 33(5): 84-87. doi: 10.3969/j.issn.1003-1421.2011.05.020ZHENG Hui. Logit model of intercity railway passenger flow forecast[J]. Railway Transport and Economy, 2011, 33 (5): 84-87. (in Chinese) doi: 10.3969/j.issn.1003-1421.2011.05.020 [20] 朱颖婷, 王富章, 单杏花, 等. 铁路客运票价策略研究综述[J]. 铁路计算机应用, 2014, 23(6) : 29-34+39. doi: 10.3969/j.issn.1005-8451.2014.06.007ZHU Yinting, WANG Fnzhang, SHAN Xinghua, et al. Review of studies on pricing strategies in railway passenger transport[J]. Railway Computer Application, 2014, 23(6) : 29-34+39. (in Chinese) doi: 10.3969/j.issn.1005-8451.2014.06.007