A Contrastive Analysis of Survivability of Urban Rail Network Based on Complex Network Theory
-
摘要: 为分析不同规模轨道交通路网面对突发事件的抗毁性能,选取中国10个典型城市的轨道交通网络,采用复杂网络理论分析模拟攻击下网络的抗毁程度。利用Pajek软件构建Space-L拓扑空间抽象路网,设定定量化评价指标,系统分析随机攻击、累计节点蓄意攻击下网络的抗毁性;利用改进网络效率公式分析单节点蓄意攻击下单一节点的失效对网络的影响程度。研究结果表明,轨道交通网络是无标度网络。随机攻击下,2种规模网络在指标为节点度、网络效率、最大连通子图的失效站点数占比分别达到10.44%和11.09%,17.99%和18.39%,13.27%和12.92%时路网崩溃;累计节点蓄意攻击下,2种规模网络在指标为节点度、网络效率、最大连通子图的失效站点数占比分别达到5.22%和5.17%,4.3%和3.19%,4.23%和2.43%时路网崩溃。与在发散型线路交点的失效节点相比,处在三角形顶点或网状结构内的失效节点对整体网络的抗毁性更强。Abstract: The metro networks of 10 typical cities in China are selected to analyze the resilience of different metro networks to emergencies.The complex network theory is used to analyze the resilience of networks under simulated attacks.Pajek software is used to construct an abstract road network of topological space Space-L.Quantitative evaluation indicators are set to systematically analyze the survivability of the network under random attacks and deliberate attacks of accumulated nodes.The improved network efficiency formula is used to analyze the influence of each node on the network under the single-node deliberate attack.The results show that the metro network is a scale-free network.Based on node degree, network efficiency, and the maximum connection sub-grap, the proportions of failed sites in the two networks reach 10.44%and 11.09%, 17.99%and 18.39%, and 13.27%and 12.92%under random attacks, and the net crashes.Under cumulative-node deliberate attacks, the proportions of failed sites in the two networks reach 5.22%and 5.17%, 4.3%and 3.19%, and 4.23%and 2.43%, and the net crashes.Compared with the failure node at the intersection of divergent lines, the node at the apex of the triangle or the mesh structure is more invulnerable to the network.
-
表 1 突发事件与网络攻击对应关系
Table 1. Relationship between the emergency and network attack
攻击类别 突发事件种类 随机攻击(R攻击) 技术设备类、自然灾害类 累计节点蓄意攻击(CM攻击) 社会治安类、运营故障类 单节点蓄意攻击 社会治安类、大客流类 表 2 各城市轨道交通网络静态表征指标
Table 2. Static representation indices of the metro network in China
城市 S n m Ln K E(G) C α 北京 23 338 380 56 2.248 52 0.044 28 0.001 97 0.376 98 上海 16 337 398 56 2.362 02 0.047 69 0.005 64 0.396 02 成都 11 279 314 45 2.250 90 0.048 67 0.001 79 0.377 86 深圳 11 237 273 39 2.303 80 0.055 55 0.003 80 0.387 23 广州 13 226 245 32 2.168 14 0.046 69 0 0.364 58 重庆 8 164 176 18 2.146 34 0.054 81 0 0.362 14 天津 6 143 153 15 2.139 86 0.061 42 0 0.361 70 苏州 4 126 130 9 2.063 49 0.059 03 0 0.349 46 杭州 5 123 131 14 2.130 08 0.058 95 0 0.360 88 西安 5 102 104 6 2.039 22 0.064 41 0 0.346 67 表 3 各城市原始度分布尾部度分布拟合函数
Table 3. Tail-fitting function of each city's original degree distribution
城市 拟合函数 R2 北京 410K-9.1 + 0.00243 0.972 0 上海 1.04×108K-27.07+0.029 0.975 5 成都 1.9×106K-21.27+0.027 0.972 3 深圳 8.39×107K-26.66+0.024 0.984 7 广州 54.53K-6.1+0.01 0.993 4 重庆 208.8K-8+0.012 0.995 4 天津 6.1×108K-29.5+0.018 0.986 0 苏州 2.5×106K-21.47+0.012 0.995 0 杭州 703.8K-9.789+0.016 0.988 5 西安 4.675×107K-25.71+0.01 0.995 4 表 4 各城市模拟攻击后尾部度分布拟合函数
Table 4. Tail-fitting function of each city's degree distribution under attack
随机攻击(R攻击) R2 蓄意累计攻击(M攻击) R2 北京 -0.131K0.568+0.373 0.729 3 -0.167K0.50+0.413 0.716 7 上海 -0.145K0.52+0.381 0.779 5 -0.118K0.616+0.366 0.567 5 成都 -0.115K0.619+0.362 0.756 4 -0.163K0.512+0.412 0.730 1 深圳 -0.115K0.615+0.359 0.698 8 -0.149K0.543+0.399 0.693 6 广州 -0.136K0.554+0.379 0.709 5 -0.122K0.622+0.377 0.647 2 重庆 -0.149K0.524+0.391 0.713 6 -0.111K0.645+0.361 0.542 8 天津 -0.117K0.608+0.362 0.670 6 -0.117K0.639+0.374 0.632 9 苏州 -0.123K0.60+0.372 0.614 2 -0.104K 0.68+0.36 0.598 1 杭州 -0.11K0.637+0.356 0.676 9 -0.113K0.649+0.367 0.622 3 西安 -0.134K0.563+0.38 0.680 6 -0.115K0.645+0.371 0.624 8 表 5 R攻击下不同规模网络指标边界
Table 5. Network-index boundary of different scale under R attacks
% 指标边界 规模1 规模2 节点度80 10.44 11.09 网络效率50 17.99 18.39 最大连通子图 60 13.27 12.92 表 6 CM攻击下不同规模网络指标边界
Table 6. Network index boundary of different scales under CM attacks
% 指标边界 规模1 规模2 节点度80 5.22 5.17 网络效率50 4.30 3.19 最大连通子图 60 4.23 2.43 -
[1] 中国城市轨道交通协会. 城市轨道交通2020年度统计和分析报告[R]. 北京: 中国城市轨道交通协会, 2021.China Association of Metros. Urban rail transit statistics and analysis report in 2020[R]. China Association of Metros, 2021. (in Chinese). [2] 强添纲, 赵明明, 裴玉龙. 城市多模式交通网络的复杂网络特性与鲁棒性研究[J]. 交通信息与安全, 2019, 37(1): 65-71. doi: 10.3963/j.issn.1674-4861.2019.01.009QIANG Tiangang, ZHAO Mingming, PEI Yulong. An analysis of characteristic of complex network and robustness in Harbin multi-modal traffic network[J]. Journal of Transport Information and Safety, 2019, 37(1): 65-71(. in Chinese). doi: 10.3963/j.issn.1674-4861.2019.01.009 [3] XU Qing, ZU Zhenghu, XU Zhijing, et al. Space P-based empirical research on public transport complex networks in 330 Cities of China[J]. Journal of Transportation Systems Engineering and Information Technology, 2013, 13(1): 193-198. doi: 10.1016/S1570-6672(13)60100-2 [4] LATORA V, MARCHIORI M. Is the Boston subway a small-word network[J]. Physica A: Statistical Mechanics and Its Applications, 2002, 314(1-4): 109-113. doi: 10.1016/S0378-4371(02)01089-0 [5] 王雪. 基于复杂网络理论的城市路网特性研究[D]. 西安: 长安大学, 2014.WANG Xue. Research on characteristics of urban road network based on complex network theory[D]. Xi'an: Chang'an Univer-sity, 2014(. in Chinese). [6] WU Xingtang, DONG Hairong, KONG Chi-Tse, et al. Analysis of metro network performance from a complex network perspective[J]. Physica A: Statistical Mechanics and its Applications, 2018, 492(15): 553-563. http://www.ee.cityu.edu.hk/home/doc/seminars/PolyU2016_09_30_XingtangWu.pdf [7] 马嘉琪, 白雁, 韩宝明. 城市轨道交通线网基本单元与复杂网络性能分析[J]. 交通运输工程学报, 2010, 10(4): 65-70+102. doi: 10.3969/j.issn.1671-1637.2010.04.011MA Jiaqi, BAI Yan, HAN Baoming. Characteristic analysis of basic unit and complex network for urban rail transit[J]. Journal of Traffic and Transportation Engineering, 2010, 10(4): 65-70+102(. in Chinese). doi: 10.3969/j.issn.1671-1637.2010.04.011 [8] 谌微微, 张富贵, 赵晓波. 轨道交通线网拓扑结构模型及节点重要度分析[J]. 重庆交通大学学报(自然科学版), 2019, 38(7): 107-113. doi: 10.3969/j.issn.1674-0696.2019.07.18CHEN Weiwei, ZHANG Fugui, ZHAO Xiaobo. Topological structure model and node importance analysis of rail transit network[J]. Journal of Changqing Jiaotong University(Natural Science), 2019, 38(7): 107-113(. in Chinese). doi: 10.3969/j.issn.1674-0696.2019.07.18 [9] ]高天智, 陈宽民, 李风兰. 城市轨道交通网络的拓扑结构分析[J]. 长安大学学报(自然科学版), 2018, 38(3): 97-106. doi: 10.3969/j.issn.1671-8879.2018.03.012GAO Tianzhi, CHEN Kuanming, LI Fenglan. Topology analysis of urban rail transit network[J]. Journal of Chang'an University(Natural Science Edition), 2018, 38(3): 97-106(. in Chinese). doi: 10.3969/j.issn.1671-8879.2018.03.012 [10] 丁泓翔. 轨道交通突发事件下桥接公交应急联运研究[D]. 北京: 北京交通大学, 2018.DING Hongxiang. Research on feeder bus service for the emergency of rail transit[D]. Beijing: Beijing Jiaotong University, 2018(. in Chinese). [11] ANGELOUDIS P, FISK D. Large subway systems as complex networks[J]. Physica A: Statistical Mechanics and its Applications, 2006, 367(15): 553-558. http://www.sciencedirect.com/science/article/pii/S0378437105011994 [12] 韩纪彬, 张苗, 郭进利. 城市轨道交通网络可靠性分析[J]. 城市交通, 2015, 13(5): 80-84+42. https://www.cnki.com.cn/Article/CJFDTOTAL-CSJT201505013.htmHAN Jibin, ZHANG Miao, GUO Jinli. Urban rail transit network reliability analysis[J]. Urban Transport of China, 2015, 13(5): 80-84+42(. in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CSJT201505013.htm [13] ZHANG Jianhua, WANG Shuliang, WANG Xiaoyuan. Comparison analysis on vulnerability of metro network based on complex network[J]. Physica A: Statistical Mechanics and its Applications, 2018(496): 72-78. http://www.sciencedirect.com/science/article/pii/S0378437117313377 [14] 吴贤国, 黄艳华, 刘惠涛, 等. 基于复杂网络理论的地铁线网脆弱性分析[J]. 重庆交通大学学报(自然科学版), 2016, 35(4): 93-99. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201604019.htmWU Xianguo, HUANG Yanhua, LIU Huitao, et al. Vulnerability analysis of subway network based on complex network theory[J]. Journal of Chongqing Jiaotong University(Natural Science), 2016, 35(4): 93-99(. in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201604019.htm [15] 王彬, 戴剑勇, 邓先红. 城市复杂地铁网络级联失效抗毁性分析[J]. 南华大学学报(自然科学版), 2019, 33(6): 91-96. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGB201906017.htmWANG Bin, DAI Jianyong, DENG Xianhong. Failure Analysis of urban complex metro network cascading failure[J]. Journal of University of South China(Science and Technology), 2019, 33(6): 91-96(. in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGB201906017.htm [16] 冯树民, 麻海洲, 吕天玲, 等. 考虑攻击程度的城市轨道交通网络抗毁性分析[J]. 武汉理工大学学报(交通科学与工程版), 2019, 43(3): 379-384. doi: 10.3963/j.issn.2095-3844.2019.03.001FENG Shumin, MA Haizhou, LYU Tianling, et al. Analysis on the invulnerability of urban rail transit network considering the degree of attack[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering Edition), 2019, 43(3): 379-384(. in Chinese). doi: 10.3963/j.issn.2095-3844.2019.03.001 [17] 段佳勇, 郑宏达. 基于节点重要度的复杂网络脆弱性分析方法[J]. 控制工程, 2020, 27(4): 692-696. https://www.cnki.com.cn/Article/CJFDTOTAL-JZDF202004017.htmDUAN Jiayong, ZHENG Hongda. Vulnerability analysis method for complex networks based on node importance[J]. Control Engineering of China, 2020, 27(4): 692-696(. in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZDF202004017.htm [18] 邓旭东, 王雪, 徐文平, 等. 城市地铁网络脆弱性对比分析[J]. 中国安全科学学报, 2017, 27(3): 152-156. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201703028.htmDENG Xudong, WANG Xu, XU Wenping, et al. Comparative analysis of vulnerability of urban metro network[J]. China Safety Science Journal, 2017, 27(3): 152-156. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201703028.htm [19] 周涛, 柏文洁, 汪秉宏, 等. 复杂网络研究概述[J]. 物理, 2005(1): 31-35. https://www.cnki.com.cn/Article/CJFDTOTAL-WLZZ200501010.htmZHOU Tao, BAI Wenjie, WANG Binhong, et al. A brief review of complex networks[J]. Physics, 2005(1): 31-35. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WLZZ200501010.htm [20] 冯春, 朱倩, 于宝. 城市轨道交通网络鲁棒性仿真[J]. 计算机仿真, 2018, 35(10): 182-186+461. doi: 10.3969/j.issn.1006-9348.2018.10.037FENG Chun, ZHU Qian, YU Bao. Robustness of urban rail transit network[J]. Computer Simulation, 2018, 35(10): 182-186+461(. in Chinese). doi: 10.3969/j.issn.1006-9348.2018.10.037 [21] 郭世泽, 陆哲明. 复杂网络基础理论[M]. 北京: 科学出版社, 2012.GUO Shize, LU Zheming. Basic theory of complex networks[M]. Beijing: Science Press, 2012(. in Chinese). [22] 汪小帆, 李翔, 陈关荣. 复杂网络理论及应用[M]. 北京: 清华大学出版社, 2006.WANG Xiaofan, LI Xiang, CHEN Guanrong. Complex network theory and application[M]. Beijing: Tsinghua University Press, 2006(. in Chinese). [23] 李冰玉, 秦孝敏. 城际铁路线网站点及线路的脆弱性分析[J]. 中国安全科学学报, 2013, 23(5): 108-113. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201305020.htmLI Bingyu, QIN Xiaomin. Study on vulnerability of Inter-city rail net stations and sections to attack[J]. China Safety Science Journal, 2013, 23(5): 108-113(. in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201305020.htm