A Simulation Optimization Algorithm for Multi-aircraft Rerouting in Severe Weather
-
摘要: 针对恶劣天气下区域管制区内,多航空器改航路径规划中缺乏降低管制员工作总负荷的考虑。以贵阳区域管制区为例,研究了恶劣天气下多航空器改航路径的仿真优化算法。采用灰色模型预测飞行受限区的动态影响范围;利用几何算法预先规划可供选择的改航路径;改进离散粒子群优化算法的运算规则;以整个区域管制区内改航总路径最短和管制员工作总负荷最低为目标,结合预测的飞行受限区、预先规划的改航路径、改进离散粒子群优化算法和全空域与机场模型实现恶劣天气下多航空器改航路径的仿真优化算法。结果表明,该仿真优化算法经过多次迭代,获得了改航优化方案;与采用传统粒子群算法的仿真优化算法相比,管制员工作总负荷下降了7.52%,改航总路径距离减少了4.48%;与采用多目标粒子群算法和非支配排序遗传算法-II的改航路径算法相比,其改航路径距离略长,但考虑了管制员工作负荷的影响。该仿真优化算法能在减少改航路径距离的同时有效降低管制员工作负荷,对实际改航规划具有借鉴意义。Abstract: A simulation optimization algorithm for multiple aircraft diversion routes under severe weather is studied to address the lack of consideration for reducing the total controller workload in the planning of multiple aircraft re-routes in the regional control area(RCA)during severe weather. Guiyang RCA is taken as a case study. A gray model is used to predict the dynamic impact range of the flight forbidden area(FFA), and a geometric algorithm is used to plan the alternative diversion routes, with the operation rules of the discrete particle swarm optimization algorithm (DPSO)improved. The simulation optimization algorithm of multiple aircraft diversion routes in severe weather is implemented by combining the predicted FFA, the pre-planned diversion routes, the improved DPSO algorithm, and the total airspace and airport modeler(TAAM)to minimize the total diversion routes and the total controller workload in the whole area. The results show that the simulation optimization algorithm, after several iterations, can obtain a diverting optimization scheme. The total controller workload decreases by 7.52%, and the total distance of diverting routes decreases by 4.48%, compared with the simulation optimization algorithm using the traditional particle swarm optimization algorithm(PSO). It has a slightly longer distance of diverting routes compared with the rerouting path algorithm using the multi-objective particle swarm algorithm(MOPSO)and the non-dominated sorted genetic algorithm-II(NSGA-II). However, the influences of controller workload should be considered. The simulation optimization algorithm can reduce the effective controller workload and the distance of diverting routes, which is useful for the planning of actually diverting routes.
-
表 1 改航数据汇总
Table 1. Summary of diverting data
Origin PSO DPSO 管制员工作总负荷/ (当量架次) 216.21 256.85 237.54 改航总路径距离/(n mile) 3 572.10 4 437.30 4 238.70 表 2 CDC8823航班的改航数据
Table 2. Date of the diversion of Flight CDC8823
位置 时间 距离 位置 时间 距离 位置 时间 距离 ZSHC 16:48:00 0 ZSHC 16:48:00 0 ZSHC 16:48:00 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ P159 18:04:18 559.6 P159 18:04:18 559.6 P159 18:04:18 559.6 ZHJ 18:11:55 599 ZHJ 18:11:55 599 ZHJ 18:11:55 599 P293 18:14:45 619.8 P293 18:14:44 619.7 P293 18:14:45 619.8 XONID 18:21:30 669.4 B3 18:18:23 646.5 B1 18:18:47 649.4 UBDID 18:28:08 718.1 B1 18:18:58 650.8 XONID 18:21:04 665.2 MASRO 18:31:29 742.6 B2 18:19:25 654.1 UGUGU 18:24:59 684.9 ⋮ ⋮ ⋮ XONID 18:21:03 666.1 A1 18:29:08 715.4 ZUBJ 18:54:34 861.8 UGUGU 18:25:03 685.4 UBDID 18:32:07 732.3 A3 18:29:12 715.9 MASRO 18:35:57 768.4 A1 18:30:08 722.7 ⋮ ⋮ ⋮ A2 18:30:24 724.7 ZUBJ 18:59:01 894.5 UBDID 18:32:41 736.5 MASRO 18:36:30 772.5 ⋮ ⋮ ⋮ ZUBJ 18:59:37 898.7 -
[1] NG H K, GRABBE S, MUKHERJEE A. Design and evaluation of a dynamic programming flight routing algorithm using the convective weather avoidance model[C]. AIAA Guidance, Navi gation, and Control Conference, Chicago, Illinois: AIAA, 2009. [2] KROZEL J, PENNY S, PRETE J, et al. Automated route gener ation for avoiding deterministic weather in transition air space[J]. Journal of Guidance, Control, and Dynamics. 2007, 30 (1): 144-153. doi: 10.2514/1.22970 [3] PRETE J, MITCHELL J. Safe routing of multiple aircraft flows in the presence of time-varying weather data[C]. AIAA Guid ance, Navigation, and Control Conference, Rhode Island: AIAA, 2004. [4] PRETE J M. Aircraft routing in the presence of hazardous weather[D]. New York: Stony Brook University, 2007. [5] TAYLOR C, WANKE C. Dynamically generating operational ly-acceptable route alternatives using simulated annealing[C]. Ninth USA/Europe Air Traffic Management Research and De velopment Seminar(ATM2011), Virginia: Air Traffic Control Quarterly, 2011. [6] KROZEL J, PENNY S, PRETE J. Comparison of algorithms for synthesizing weather avoidance routes in transition air space[C]. AIAA Guidance, Navigation, and Control Confer ence, Rhode Island: AIAA, 2004. [7] KROZEL J, PRETE J, MITCHELL J, et al. Designing on-demand coded departure routes[C]. AIAA Guidance, Navigation, and Control Conference, Keystone, Colorado: AIAA, 2006. [8] 李雄, 徐肖豪, 朱承元, 等. 基于几何算法的空中交通改航路径规划[J]. 系统工程, 2008, 26(8): 37-40. doi: 10.3969/j.issn.1001-4098.2008.08.007LI Xiong, XU Xiaohao, ZHU Chengyuan, et al. Air traffic re route planning based on geometry algorithm[J]. Systems Engi neering, 2008(8): 37-40. (in Chinese) doi: 10.3969/j.issn.1001-4098.2008.08.007 [9] 赵元棣, 李瑞东, 吴佳馨. 动态危险天气下改航路径快速规划方法[J]. 中国科技论文, 2020, 15(6): 678-681+689. doi: 10.3969/j.issn.2095-2783.2020.06.012ZHAO Yuandi, LI Ruidong, WU Jiaxin. Fast reroute planning method under dynamic hazardous weather conditions[J]. China Sciencepaper, 2020, 15(6): 678-681+689. (in Chinese) doi: 10.3969/j.issn.2095-2783.2020.06.012 [10] 张兆宁, 魏中慧. 散点状分布危险天气下的终端区动态改航方法[J]. 中国安全科学学报, 2016, 26(1): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201601008.htmZHANG Zhaoning, WEI Zhonghui. A dynamic deviation meth od for terminal control areas under scattered hazardous weath er[J]. China Safety Science Journal, 2016, 26(1): 40-44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201601008.htm [11] 杜实, 王俊凯, 任景瑞. 基于改进多目标粒子群算法的航空器改航研究[J]. 安全与环境学报, 2020, 20(1): 177-185. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202001024.htmDU Shi, WANG Junkai, REN Jingrui. On the aircraft fly ing-goal diversion based on the improved multi-objective parti cle swarm optimization[J]. Journal of Safety and Environment, 2020, 20(1): 177-185. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202001024.htm [12] 刘国栋, 张志锋. 一种改进的粒子群算法与遗传算法的比较[J]. 火力与指挥控制, 2010, 35(增刊1): 150-151. https://www.cnki.com.cn/Article/CJFDTOTAL-HLYZ2010S1052.htmLIU Guodong, ZHANG Zhifeng. An improved particle swarm optimization algorithm and genetic algorithm[J]. Fire Control and Command Control, 2010, 35(S1): 150-151. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLYZ2010S1052.htm [13] 李雄. 飞行危险天气下的航班改航路径规划研究[D]. 南京: 南京航空航天大学, 2009.LI Xiong. Flight rerouting path planning in severe weather[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009. (in Chinese) [14] 陈可嘉, 陈琳琳. 危险天气飞行受限区域的划设与预测[J]. 南京航空航天大学学报(社会科学版), 2017, 19(4): 59-63. https://www.cnki.com.cn/Article/CJFDTOTAL-HTXB201704012.htmCHEN Kejia, CHEN Linlin. Division and prediction of flight forbidden area in severe weather[J]. Journal of Nanjing Univer sity of Aeronautics and Astronautics(Social Sciences Edi tion), 2017, 19(4): 59-63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HTXB201704012.htm [15] 谢春生, 李雄. 危险天气影响航路飞行区域的划设及评估[J]. 中国安全科学学报, 2010, 20(10): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201010010.htmXIE Chunsheng, LI Xiong. Division and evaluation of flight forbidden area in severe weather[J]. China Safety Science Journal, 2010, 20(10): 47-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201010010.htm [16] 高伟, 叶志坚, 陈晨. 终端区进场流的路径选择研究[J]. 交通信息与安全, 2016, 34(4): 29-36. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201604006.htmGAO Wei, YE Zhijian, CHEN Chen. A study on path selec tion of arrival flow at airport landing areas[J]. Journal of Trans port Information and Safety, 2016, 34(4): 29-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201604006.htm [17] 刘胜利, 王刚. 基于雷达图的空袭目标突防航路威胁评估[J]. 系统仿真学报, 2021, 33(1): 196-204. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ202101023.htmLIU Shengli, WANG Gang. Threat assessment for the defense penetration paths of air strike aircrafts based on radar chart[J]. Journal of System Simulation, 2021, 33(1): 196-204. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ202101023.htm [18] 程毕芸, 鲁海燕, 徐向平, 等. 求解旅行商问题的改进局部搜索混沌离散粒子群优化算法[J]. 计算机应用, 2016, 36(1): 138-142. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201601028.htmCHENG Biyun, LU Haiyan, XU Xiangping, et al. Improved lo cal-search-based chaotic discrete panicle swarm optimization algorithm for solving traveling salesman problem[J]. Journal of Computer Applications, 2016, 36(1): 138-142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201601028.htm [19] 李雄, 徐肖豪, 赵嶷飞, 等. 散点状分布危险天气区域下的航班改航路径规划[J]. 航空学报, 2009, 30(12): 2342-2347. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200912018.htmLI Xiong, XU Xiaohao, ZHAO Yifei, et al. Flight rerouting path planning in dispersedly distributed severe weather areas[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(12): 2342-2347. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200912018.htm