Design Indices of Circular Curve Section Based on Lateral Stability
-
摘要: 车辆在附着系数较小的圆曲线路段转向时,轮胎会处于非线性区内工作,此时基于线性理论的侧向稳定性分析方法会产生较大误差。建立6自由度非线性车辆系统模型,分析其处于非线性域与线性域下不同的特性状态,得到不同车速、路面附着系数下使车辆系统处于临界状态的圆曲线路段半径、超高设计指标。对线性域与非线性域内的车辆系统分别采用基于线性理论的根轨迹法与基于非线性理论的相平面法分析侧向稳定性,得到综合考虑2种状态下车辆临界失稳状态的圆曲线路段指标。结果表明,车速为60 km/h,路面附着系数为0.24,超高小于6% 时,车辆发生侧向失稳时轮胎处于非线性域,此时使用相平面法分析得到侧向失稳临界指标;车速为60 km/h,路面附着系数为大于0.4,超高处于4%到10%之间时,车辆发生侧向失稳时轮胎处于线性域,此时使用根轨迹法分析得到侧向失稳临界指标。Abstract: When a vehicle turns in a circular curve section with a small adhesion coefficient, its tires work in a nonlinear zone, and the lateral stability analysis method based on the linear theory would generate large errors. This paper focuses on the different characteristics of the 6-DOF nonlinear vehicle system model in nonlinear and linear domains. Under different speed and road adhesion coefficients, the radius and superelevation design indices of the circular curve section with the critical state of the vehicle system are calculated. The root locus method based on the linear theory and the phase plane method based on the nonlinear theory are used to analyze the lateral stability of vehicle systems in linear and nonlinear domains, respectively. Then, a sectional index of the circular curve considering the critical instability state of vehicles in both states is obtained. The results show that when the vehicle speed is 60 km/h, with the road adhesion coefficient of 0.24, and the superelevation less than 6%. The tires are in the nonlinear domain when the vehicle lateral instability occurs. Besides, a critical index of lateral instability is obtained using the phase plane method. When the vehicle speed is 60 km/h, the road adhesion coefficient is greater than 0.4, and the superelevation is between 4 and 10%. The tires are in the linear domain when the vehicle lateral instability occurs, and the root system is used. Then a critical index of lateral instability is obtained by trajectory analysis.
-
Key words:
- traffic safety /
- circular curve section /
- lateral stability /
- phase plane method /
- root locus method /
- simulation
-
表 1 整车参数
Table 1. Vehicle parameters
车辆参数 数值 整车质量/kg 1 416 转动惯量/(kg/m2) 1 523 质心-前轴距/m 1.016 质心-后轴距/m 1.562 轮距/m 1.534 轮胎半径/m 0.310 表 2 部分半径值对应的前轮转角
Table 2. Front wheel turning angle corresponding to some radius values
编号 半径r/m 前轮转角δ/(°) 1 200 0.79 2 150 1.05 3 120 1.31 4 100 1.56 5 80 1.97 6 67 2.47 7 60 2.84 8 40 4.08 表 3 车辆系统非线性域临界指标
Table 3. Critical index of the vehicle system in the nonlinear domain
车速/(km/h) 路面附着系数μ 超高θ/% 非线性域临界半径R1/m 60 0.24 4 127 6 109 8 89 10 76 0.4 4 63 6 54 8 49 10 42 0.6 4 48 6 45 8 41 10 37 表 4 车辆系统侧向失稳状态临界指标
Table 4. Critical index of the laterally unstable state of a vehicle system
路面附着系数μ 超高θ/% 失稳状态临界半径R1/m 非线性域临界半径R2/m 0.24 4 86 127 6 82 109 8 77 89 10 74 76 0.4 4 64 63 6 62 54 8 57 49 10 55 42 0.6 4 52 48 6 48 45 8 45 41 10 40 37 表 5 非线性域侧向失稳状态临界指标
Table 5. Critical index of lateral instability in the nonlinear domain
路面附着系数μ 超高θ/% 失稳状态临界半径R1/m 非线性域临界半径R2/m 0.24 4 103 127 6 107 109 8 116 89 10 124 76 0.4 4 74 61 6 71 54 8 84 49 10 92 42 0.6 4 68 48 6 71 45 8 82 41 10 87 37 表 6 侧向稳定性分析准确性验证
Table 6. Verification of the accuracy of lateral stability analysis
路面附着系数μ 超高θ/% 仿真得到的极限失稳半径R1/m 相平面法极限失稳半径R2/m 根轨迹法极限失稳半径R3/m 侧向失稳临界半径R4/m 0.24 4 105 103 86 103 6 97 107 82 107 8 91 116 77 77 10 85 124 74 74 0.4 4 67 74 64 64 6 64 71 62 62 8 61 84 57 57 10 58 92 55 55 0.6 4 47 68 52 52 6 45 71 48 48 8 44 82 45 45 10 42 87 40 40 -
[1] 岳雷, 杜豫川, 姚红云. 基于行驶稳定性的山区公路弯道最小半径优化[J]. 交通运输系统工程与信息, 2018, 18(5): 204-210. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201805030.htmYUE Lei, DU Yuchuan, YAO Hongyun. Optimization of the minimum radius index of mountain road curve based on driving stability[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(5): 204-210. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201805030.htm [2] 孙川, 吴超仲, 褚端峰, 等. 基于车辆侧向稳定性分析的弯道行驶安全评价[J]. 交通信息与安全, 2014, 32(6): 95-100. doi: 10.3963/j.issn.1674-4861.2014.06.016SUN Chuan, WU Chaozhong, CHU Duanfeng, et al. Safety evaluation of driving on curves based on analysis of vehicle lateral stability[J]. Journal of Transport Information and Safety, 2014, 32(6): 95-100. (in Chinese) doi: 10.3963/j.issn.1674-4861.2014.06.016 [3] BILGANA M, DRAZEN C. Evaluation of design consistency on horizontal curves for two-lane state roads in terms of vehicle path radius and speed[J]. The Baltic Journal of Road and Bridge Engineering, 2016, 11(2): 54-58. http://www.researchgate.net/publication/304170050_Evaluation_of_Design_Consistency_on_Horizontal_Curves_for_Two-Lane_State_Roads_in_Terms_of_Vehicle_Path_Radius_and_Speed [4] DONNELL E, WOOD J, HIMES S, et al. Use of side friction in horizontal curve design: A margin of safety assessment[J]. Transportation Research Record, 2016(1): 61-71. http://en.cnki.com.cn/Article_en/CJFDTotal-GCJS201615034.htm [5] 陈一锴, 史婷, 石琴, 等. 侧向安全边界理论在圆曲线路段限速中的应用[J]. 哈尔滨工业大学学报, 2019, 51(3): 179-185. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201903026.htmCHEN Yikai, SHI Ting, SHI Qin, et al. Setting speed limit for horizontal circular curve of mountain highway using lateral safety boundary theory[J]. Journal of Harbin Institute of Technology, 2019, 51(3): 179-185. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201903026.htm [6] 姜康, 张梦雅, 陈一锴. 山区圆曲线路段半挂汽车列车行驶安全性分析[J]. 交通运输工程学报, 2015, 15(3): 109-117. doi: 10.3969/j.issn.1671-1637.2015.03.015JIANG Kang, ZHANG Mengya, CHEN Yikai. Driving safety analysis of semi-trailer train at circular curve section in mountain area[J]. Journal of Traffic and Transportation Engineering, 2015, 15(3): 109-117. (in Chinese) doi: 10.3969/j.issn.1671-1637.2015.03.015 [7] 刘飞, 熊璐, 邓律华, 等. 基于相平面法的车辆行驶稳定性判定方法[J]. 华南理工大学学报(自然科学版), 2014, 42 (11): 63-70. doi: 10.3969/j.issn.1000-565X.2014.11.010LIU Fei, XIONG Lu, DENG Lühua, et al. Vehicle stability criterion based on phase plane method[J]. Journal of South China University of Technology: (Natural Science Edition), 2014, 42 (11): 63-70. (in Chinese) doi: 10.3969/j.issn.1000-565X.2014.11.010 [8] 韦超毅, 谢美芝, 盘朝奉, 等. 根轨迹法在汽车操纵稳定性研究中的应[J]. 农业机械学报, 2007(9): 19-22. doi: 10.3969/j.issn.1000-1298.2007.09.005WEI Chaoyi, XIE Meizhi, PAN Chaofeng, et al. Integrated root locus method and stability factor to study handling stability of automobile[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007(9): 19-22. (in Chinese) doi: 10.3969/j.issn.1000-1298.2007.09.005 [9] 钱宇彬, 肖凌云, 王婉秋. 双车道公路驾驶人-车辆-弯道(环境)系统模型[J]. 汽车技术, 2019(8): 32-38. https://www.cnki.com.cn/Article/CJFDTOTAL-QCJS201908008.htmQIAN Yubin, XIAO Lingyun, WANG Wanqiu. Driver-Vehicle-Curve(Environment)system model in two-lane highway[J]. Automobile Technology, 2019(8): 32-38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCJS201908008.htm [10] 金辉, 李世杰. 基于极限车速的车辆稳定性控制研究[J]. 汽车工程, 2018, 40(1): 48-56. doi: 10.3969/j.issn.1674-6546.2018.01.013JIN Hui, LI Shijie. A research on vehicle stability control based on limited speed[J]. Automotive Engineering, 2018, 40 (1): 48-56. (in Chinese) doi: 10.3969/j.issn.1674-6546.2018.01.013 [11] 许建, 张政, 李翔, 等. 独立驱动电动汽车横摆力矩的模糊控制算法[J]. 西安交通大学学报, 2014, 48(7): 83-89. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201407015.htmXU Jian, ZHANG Zheng, LI Xiang, et al. A fuzzy control system for the direct yaw moment of 4WD electric vehicles[J]. Journal of Xi'an Jiaotong University, 2014, 48(7): 83-89. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201407015.htm [12] PACEJKA H B. Tire and vehicle dynamics[M]. Oxford: Butterworth-Heinemann, 2002. [13] 张先勇. 公路平曲线横向力系数的研究[D]. 武汉: 华中科技大学, 2005.ZHANG Xianyong. Research on the coefficient of lateral force of highway horizontal curve[D]. Wuhan: Huazhong University of Science and Technology, 2005. (in Chinese) [14] OMORODION I I, OBINABO C E, EVBOGBAI M J E. Modeling, design and simulation of active suspension system root locus controller using automated tuning technique[J]. Mathematical Theory and Modeling, 2016, 6(1): 52-56. http://www.iiste.org/Journals/index.php/MTM/article/download/28232/28978 [15] 张志达, 李韶华, 刘星, 等. 全轮转向多轴车辆性能分析及侧翻前馈预警研究[J]. 北京理工大学学报, 2018, 38(1): 142-146.ZHANG Zhida, LI Shaohua, LIU Xing, et al. Performance analysis and rollover feed-forward warning for multi-axle vehicle with all wheel steering[J]. Journal of Beijing Institute of Technology, 2018, 38(1): 142-146. (in Chinese) [16] 李静, 王子涵, 王宣锋. 基于相平面法的制动方向稳定性分析[J]. 汽车工程, 2014, 36(8): 974-979. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201408014.htmLI Jing, WANG Zihan, WANG Xuanfeng. An analysis on braking directional stability based on phase-plane technique[J]. Automotive Engineering, 2014, 36(8): 974-979. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201408014.htm [17] VON V A, LU Haiyan, KIENCKE U. Detection of critical driving situations using phase plane method for vehicle lateral dynamics control by rear wheel steering[J]. IFAC Proceedings Volumes, 2008, 41(2): 5694-5699. doi: 10.3182/20080706-5-KR-1001.00960 [18] ZHANG Lizeng, GUAN Hsin, JIA Xin, et al. A study on the effect of driver model parameters on the performance of driver-vehicle-road closed-loop system[J]. Applied Mechanics and Materials, 2014, 470(1): 604-608. http://www.scientific.net/AMM.470.604 [19] LI Haiqing, ZHAO Youqun, WANG Haoyu, et al. Design of an improved predictive LTR for rollover warning systems[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39(10): 3779-3791. doi: 10.1007/s40430-017-0796-7 [20] MENESES H, ARRIETA O, PADULA F, et al. PI/PID control design based on a fractional-order model for the process[J]. IFAC PapersOnLine, 2019, 52(1): 976-981. doi: 10.1016/j.ifacol.2019.06.189