Road Capacity Calculation under Adverse Weather Based on RBF Neural Network
-
摘要: 不利天气下影响城市道路通行能力的各种因素都具有随机的、非线性,采用常态条件下修正理论通行能力的计算方法是不适合的.文章结合RBF神经网络模型方法能够良好地分析出随机的、非线性的特点,对路网组成单元进行重新划分,选定不利天气下道路通行能力的影响因素,建立了道路通行能力计算的RBF神经网络模型.并依据哈尔滨市暴雨天气下道路的实际情况进行了算例分析,计算的道路通行能力与实测数据最大误差为-1.16%,验证了模型的可行性和有效性.
点击查看大图
计量
- 文章访问数: 529
- HTML全文浏览量: 109
- PDF下载量: 0
- 被引次数: 0